@article{MemmelSisarioZoelleretal.2017, author = {Memmel, Simon and Sisario, Dmitri and Z{\"o}ller, Caren and Fiedler, Vanessa and Katzer, Astrid and Heiden, Robin and Becker, Nicholas and Eing, Lorenz and Ferreira, F{\´a}bio L.R. and Zimmermann, Heiko and Sauer, Markus and Flentje, Michael and Sukhorukov, Vladimir L. and Djuzenova, Cholpon S.}, title = {Migration pattern, actin cytoskeleton organization and response to PI3K-, mTOR-, and Hsp90-inhibition of glioblastoma cells with different invasive capacities}, series = {Oncotarget}, volume = {8}, journal = {Oncotarget}, number = {28}, doi = {10.18632/oncotarget.16847}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170719}, pages = {45298-45310}, year = {2017}, abstract = {High invasiveness and resistance to chemo- and radiotherapy of glioblastoma multiforme (GBM) make it the most lethal brain tumor. Therefore, new treatment strategies for preventing migration and invasion of GBM cells are needed. Using two different migration assays, Western blotting, conventional and super-resolution (dSTORM) fluorescence microscopy we examine the effects of the dual PI3K/mTOR-inhibitor PI-103 alone and in combination with the Hsp90 inhibitor NVP-AUY922 and/or irradiation on the migration, expression of marker proteins, focal adhesions and F-actin cytoskeleton in two GBM cell lines (DK-MG and SNB19) markedly differing in their invasive capacity. Both lines were found to be strikingly different in morphology and migration behavior. The less invasive DK-MG cells maintained a polarized morphology and migrated in a directionally persistent manner, whereas the highly invasive SNB19 cells showed a multipolar morphology and migrated randomly. Interestingly, a single dose of 2 Gy accelerated wound closure in both cell lines without affecting their migration measured by single-cell tracking. PI-103 inhibited migration of DK-MG (p53 wt, PTEN wt) but not of SNB19 (p53 mut, PTEN mut) cells probably due to aberrant reactivation of the PI3K pathway in SNB19 cells treated with PI-103. In contrast, NVP-AUY922 exerted strong anti-migratory effects in both cell lines. Inhibition of cell migration was associated with massive morphological changes and reorganization of the actin cytoskeleton. Our results showed a cell line-specific response to PI3K/mTOR inhibition in terms of GBM cell motility. We conclude that anti-migratory agents warrant further preclinical investigation as potential therapeutics for treatment of GBM.}, language = {en} } @article{RichterPolatLawrenzetal.2016, author = {Richter, Anne and Polat, B{\"u}lent and Lawrenz, Ingulf and Weick, Stefan and Sauer, Otto and Flentje, Michael and Mantel, Frederick}, title = {Initial results for patient setup verification using transperineal ultrasound and cone beam CT in external beam radiation therapy of prostate cancer}, series = {Radiation Oncology}, volume = {11}, journal = {Radiation Oncology}, number = {147}, doi = {10.1186/s13014-016-0722-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147677}, year = {2016}, abstract = {Evaluation of set up error detection by a transperineal ultrasound in comparison with a cone beam CT (CBCT) based system in external beam radiation therapy (EBRT) of prostate cancer. Methods: Setup verification was performed with transperineal ultrasound (TPUS) and CBCT for 10 patients treated with EBRT for prostate cancer. In total, 150 ultrasound and CBCT scans were acquired in rapid succession and analyzed for setup errors. The deviation between setup errors of the two modalities was evaluated separately for each dimension. Results: A moderate correlation in lateral, vertical and longitudinal direction was observed comparing the setup errors. Mean differences between TPUS and CBCT were (-2.7 ± 2.3) mm, (3.0 ± 2.4) mm and (3.2 ± 2.7) mm in lateral, vertical and longitudinal direction, respectively. The mean Euclidean difference between TPUS and CBCT was (6.0 ± 3.1) mm. Differences up to 19.2 mm were observed between the two imaging modalities. Discrepancies between TPUS and CBCT of at least 5 mm occurred in 58 \% of monitored treatment sessions. Conclusion: Setup differences between TPUS and CBCT are 6 mm on average. Although the correlation of the setup errors determined by the two different image modalities is rather week, the combination of setup verification by CBCT and intrafraction motion monitoring by TPUS imaging can use the benefits of both imaging modalities.}, language = {en} } @article{SterzingEngenhartCabillicFlentjeetal.2011, author = {Sterzing, Florian and Engenhart-Cabillic, Rita and Flentje, Michael and Debus, J{\"u}rgen}, title = {Image-Guided Radiotherapy : A New Dimension in Radiation Oncology}, series = {Deutsches {\"A}rzteblatt International}, volume = {108}, journal = {Deutsches {\"A}rzteblatt International}, number = {16}, doi = {10.3238/arztebl.2011.0274}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140771}, pages = {274-280}, year = {2011}, abstract = {Background: The vital importance of imaging techniques in radiation oncology now extends beyond diagnostic evaluation and treatment planning. Recent technical advances have enabled the integration of various imaging modalities into the everyday practice of radiotherapy directly at the linear accelerator, improving the management of inter-and intrafractional variations. Methods: We present the topic of image-guided radiotherapy (IGRT) on the basis of a selective review of the literature. Results: IGRT can be performed with the aid of ultrasound, 2D X-ray devices, and computed tomography. It enables instant correction for positioning deviations and thereby improves the precision of daily radiotherapy fractions. It also enables immediate adjustment for changes in the position and filling status of the internal organs. Anatomical changes that take place over the course of radiotherapy, such as weight loss, tumor shrinkage, and the opening of atelectases, can be detected as they occur and accounted for in dosimetric calculations. There have not yet been any randomized controlled trials showing that IGRT causes fewer adverse effects or improves tumor control compared to conventional radiotherapy. Conclusion: IGRT is more precise and thus potentially safer than conventional radiotherapy. It also enables the application of special radiotherapeutic techniques with narrow safety margins in the vicinity of radiosensitive organs. Proper patient selection for IGRT must take account of the goals of treatment and the planning characteristics, as well as the available technical and human resources. IGRT should be used for steep dose gradients near organs at risk, for highly conformal dose distributions in the gastrointestinal tract where adjustment for filling variations is needed, for high-precision dose escalation to avoid geographic miss, and for patients who cannot lie perfectly still because of pain or claustrophobia.}, language = {en} } @article{DjuzenovaFiedlerKatzeretal.2016, author = {Djuzenova, Cholpon S. and Fiedler, Vanessa and Katzer, Astrid and Michel, Konstanze and Deckert, Stefanie and Zimmermann, Heiko and Sukhorukov, Vladimir L. and Flentje, Michael}, title = {Dual PI3K-and mTOR-inhibitor PI-103 can either enhance or reduce the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in tumor cells: The role of drug-irradiation schedule}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {25}, doi = {10.18632/oncotarget.9501}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177770}, pages = {38191-38209}, year = {2016}, abstract = {Inhibition of Hsp90 can increase the radiosensitivity of tumor cells. However, inhibition of Hsp90 alone induces the anti-apoptotic Hsp70 and thereby decreases radiosensitivity. Therefore, preventing Hsp70 induction can be a promising strategy for radiosensitization. PI-103, an inhibitor of PI3K and mTOR, has previously been shown to suppress the up-regulation of Hsp70. Here, we explore the impact of combining PI-103 with the Hsp90 inhibitor NVP-AUY922 in irradiated glioblastoma and colon carcinoma cells. We analyzed the cellular response to drug-irradiation treatments by colony-forming assay, expression of several marker proteins, cell cycle progression and induction/repair of DNA damage. Although PI-103, given 24 h prior to irradiation, slightly suppressed the NVP-AUY922-mediated up-regulation of Hsp70, it did not cause radiosensitization and even diminished the radiosensitizing effect of NVP-AUY922. This result can be explained by the activation of PI3K and ERK pathways along with G1-arrest at the time of irradiation. In sharp contrast, PI-103 not only exerted a radiosensitizing effect but also strongly enhanced the radiosensitization by NVP-AUY922 when both inhibitors were added 3 h before irradiation and kept in culture for 24 h. Possible reasons for the observed radiosensitization under this drug-irradiation schedule may be a down-regulation of PI3K and ERK pathways during or directly after irradiation, increased residual DNA damage and strong G2/M arrest 24 h thereafter. We conclude that duration of drug treatment before irradiation plays a key role in the concomitant targeting of PI3K/mTOR and Hsp90 in tumor cells.}, language = {en} } @article{WilbertGuckenbergerPolatetal.2010, author = {Wilbert, Juergen and Guckenberger, Matthias and Polat, Buelent and Sauer, Otto and Vogele, Michael and Flentje, Michael and Sweeney, Reinhart A.}, title = {Semi-robotic 6 degree of freedom positioning for intracranial high precision radiotherapy; first phantom and clinical results}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68613}, year = {2010}, abstract = {Background: To introduce a novel method of patient positioning for high precision intracranial radiotherapy. Methods: An infrared(IR)-array, reproducibly attached to the patient via a vacuum-mouthpiece(vMP) and connected to the table via a 6 degree-of-freedom(DoF) mechanical arm serves as positioning and fixation system. After IR-based manual prepositioning to rough treatment position and fixation of the mechanical arm, a cone-beam CT(CBCT) is performed. A robotic 6 DoF treatment couch (HexaPOD™) then automatically corrects all remaining translations and rotations. This absolute position of infrared markers at the first fraction acts as reference for the following fractions where patients are manually prepositioned to within ± 2 mm and ± 2° of this IR reference position prior to final HexaPOD-based correction; consequently CBCT imaging is only required once at the first treatment fraction. The preclinical feasibility and attainable repositioning accuracy of this method was evaluated on a phantom and human volunteers as was the clinical efficacy on 7 pilot study patients. Results: Phantom and volunteer manual IR-based prepositioning to within ± 2 mm and ± 2° in 6DoF was possible within a mean(± SD) of 90 ± 31 and 56 ± 22 seconds respectively. Mean phantom translational and rotational precision after 6 DoF corrections by the HexaPOD was 0.2 ± 0.2 mm and 0.7 ± 0.8° respectively. For the actual patient collective, the mean 3D vector for inter-treatment repositioning accuracy (n = 102) was 1.6 ± 0.8 mm while intra-fraction movement (n = 110) was 0.6 ± 0.4 mm. Conclusions: This novel semi-automatic 6DoF IR-based system has been shown to compare favourably with existing non-invasive intracranial repeat fixation systems with respect to handling, reproducibility and, more importantly, intrafraction rigidity. Some advantages are full cranial positioning flexibility for single and fractionated IGRT treatments and possibly increased patient comfort.}, subject = {Strahlentherapie}, language = {en} } @article{SaidPolatSteinetal.2012, author = {Said, Harun M. and Polat, Buelent and Stein, Susanne and Guckenberger, Mathias and Hagemann, Carsten and Staab, Adrian and Katzer, Astrid and Anacker, Jelena and Flentje, Michael and Vordermark, Dirk}, title = {Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells}, series = {World Journal of Clinical Oncology}, volume = {3}, journal = {World Journal of Clinical Oncology}, number = {7}, doi = {10.5306/wjco.v3.i7.104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123385}, pages = {104-110}, year = {2012}, abstract = {AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 x 10(7) cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5'-GCATTATTGGCATGGGAAC-3' and 5'-ATGCAGAGTAACGTGGAAG-3'. reverse transcription polymerase chain reaction was performed using primers designed using published information on -actin and hypoxia-inducible factor (HIF)-1 mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant). RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human glioblastoma. The siRNA method can represent an elegant alternative to modulate the expression of the hypoxia induced NDRG1 gene and can help to monitor the development of the cancer disease treatment outcome through monitoring the expression of this gene in the patients undergoing the different therapeutic treatment alternatives available nowadays.}, language = {en} } @article{KugerFlentjeDjuzenova2015, author = {Kuger, Sebastian and Flentje, Michael and Djuzenova, Cholpon S.}, title = {Simultaneous perturbation of the MAPK and the PI3K/mTOR pathways does not lead to increased radiosensitization}, series = {Radiation Oncology}, volume = {10}, journal = {Radiation Oncology}, number = {214}, doi = {10.1186/s13014-015-0514-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126104}, year = {2015}, abstract = {Background The mitogen-activated protein kinases (MAPK) and the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are intertwined on various levels and simultaneous inhibition reduces tumorsize and prolonges survival synergistically. Furthermore, inhibiting these pathways radiosensitized cancer cells in various studies. To assess, if phenotypic changes after perturbations of this signaling network depend on the genetic background, we integrated a time series of the signaling data with phenotypic data after simultaneous MAPK/ERK kinase (MEK) and PI3K/mTOR inhibition and ionizing radiation (IR). Methods The MEK inhibitor AZD6244 and the dual PI3K/mTOR inhibitor NVP-BEZ235 were tested in glioblastoma and lung carcinoma cells, which differ in their mutational status in the MAPK and the PI3K/mTOR pathways. Effects of AZD6244 and NVP-BEZ235 on the proliferation were assessed using an ATP assay. Drug treatment and IR effects on the signaling network were analyzed in a time-dependent manner along with measurements of phenotypic changes in the colony forming ability, apoptosis, autophagy or cell cycle. Results Both inhibitors reduced the tumor cell proliferation in a dose-dependent manner, with NVP-BEZ235 revealing the higher anti-proliferative potential. Our Western blot data indicated that AZD6244 and NVP-BEZ235 perturbed the MAPK and PI3K/mTOR signaling cascades, respectively. Additionally, we confirmed crosstalks and feedback loops in the pathways. As shown by colony forming assay, the AZD6244 moderately radiosensitized cancer cells, whereas NVP-BEZ235 caused a stronger radiosensitization. Combining both drugs did not enhance the NVP-BEZ235-mediated radiosensitization. Both inhibitors caused a cell cycle arrest in the G1-phase, whereas concomitant IR and treatment with the inhibitors resulted in cell line- and drug-specific cell cycle alterations. Furthermore, combining both inhibitors synergistically enhanced a G1-phase arrest in sham-irradiated glioblastoma cells and induced apoptosis and autophagy in both cell lines. Conclusion Perturbations of the MEK and the PI3K pathway radiosensitized tumor cells of different origins and the combination of AZD6244 and NVP-BEZ235 yielded cytostatic effects in several tumor entities. However, this is the first study assessing, if the combination of both drugs also results in synergistic effects in terms of radiosensitivity. Our study demonstrates that simultaneous treatment with both pathway inhibitors does not lead to synergistic radiosensitization but causes cell line-specific effects.}, language = {en} } @article{WohllebenScherzadGuettleretal.2015, author = {Wohlleben, Gisela and Scherzad, Agmal and G{\"u}ttler, Antje and Vordermark, Dirk and Kuger, Sebastian and Flentje, Michael and Polat, Buelent}, title = {Influence of hypoxia and irradiation on osteopontin expression in head and neck cancer and glioblastoma cell lines}, series = {Radiation Oncology}, volume = {10}, journal = {Radiation Oncology}, number = {167}, doi = {10.1186/s13014-015-0473-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125746}, year = {2015}, abstract = {Background Tumor hypoxia is a known risk factor for reduced response to radiotherapy. The evaluation of noninvasive methods for the detection of hypoxia is therefore of interest. Osteopontin (OPN) has been discussed as an endogenous hypoxia biomarker. It is overexpressed in many cancers and is involved in tumor progression and metastasis. Methods To examine the influence of hypoxia and irradiation on osteopontin expression we used different cell lines (head and neck cancer (Cal27 and FaDu) and glioblastoma multiforme (U251 and U87)). Cells were treated with hypoxia for 24 h and were then irradiated with doses of 2 and 8 Gy. Osteopontin expression was analyzed on mRNA level by quantitative real-time RT-PCR (qPCR) and on protein level by western blot. Cell culture supernatants were evaluated for secreted OPN by ELISA. Results Hypoxia caused an increase in osteopontin protein expression in all cell lines. In Cal27 a corresponding increase in OPN mRNA expression was observed. In contrast the other cell lines showed a reduced mRNA expression under hypoxic conditions. After irradiation OPN mRNA expression raised slightly in FaDu and U87 cells while it was reduced in U251 and stable in Cal27 cells under normoxia. The combined treatment (hypoxia and irradiation) led to a slight increase of OPN mRNA after 2 Gy in U251 (24 h) and in U87 (24 and 48 h) cell lines falling back to base line after 8 Gy. This effect was not seen in Cal27 or in FaDu cells. Secreted OPN was detected only in the two glioblastoma cell lines with reduced protein levels under hypoxic conditions. Again the combined treatment resulted in a minor increase in OPN secretion 48 hours after irradiation with 8 Gy. Conclusion Osteopontin expression is strongly modulated by hypoxia and only to a minor extent by irradiation. Intracellular OPN homeostasis seems to vary considerably between cell lines. This may explain the partly conflicting results concerning response prediction and prognosis in the clinical setting.}, language = {en} } @article{DjuzenovaZimmermannKatzeretal.2015, author = {Djuzenova, Cholpon S. and Zimmermann, Marcus and Katzer, Astrid and Fiedler, Vanessa and Distel, Luitpold V. and Gasser, Martin and Waaga-Gasser, Anna-Maria and Flentje, Michael and Polat, B{\"u}lent}, title = {A prospective study on histone γ-H2AX and 53BP1 foci expression in rectal carcinoma patients: correlation with radiation therapy-induced outcome}, series = {BMC Cancer}, volume = {15}, journal = {BMC Cancer}, number = {856}, doi = {10.1186/s12885-015-1890-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125303}, year = {2015}, abstract = {Background The prognostic value of histone γ-H2AX and 53BP1 proteins to predict the radiotherapy (RT) outcome of patients with rectal carcinoma (RC) was evaluated in a prospective study. High expression of the constitutive histone γ-H2AX is indicative of defective DNA repair pathway and/or genomic instability, whereas 53BP1 (p53-binding protein 1) is a conserved checkpoint protein with properties of a DNA double-strand breaks sensor. Methods Using fluorescence microscopy, we assessed spontaneous and radiation-induced foci of γ-H2AX and 53BP1 in peripheral blood mononuclear cells derived from unselected RC patients (n = 53) undergoing neoadjuvant chemo- and RT. Cells from apparently healthy donors (n = 12) served as references. Results The γ-H2AX assay of in vitro irradiated lymphocytes revealed significantly higher degree of DNA damage in the group of unselected RC patients with respect to the background, initial (0.5 Gy, 30 min) and residual (0.5 Gy and 2 Gy, 24 h post-radiation) damage compared to the control group. Likewise, the numbers of 53BP1 foci analyzed in the samples from 46 RC patients were significantly higher than in controls except for the background DNA damage. However, both markers were not able to predict tumor stage, gastrointestinal toxicity or tumor regression after curative RT. Interestingly, the mean baseline and induced DNA damage was found to be lower in the group of RC patients with tumor stage IV (n = 7) as compared with the stage III (n = 35). The difference, however, did not reach statistical significance, apparently, because of the limited number of patients. Conclusions The study shows higher expression of γ-H2AX and 53BP1 foci in rectal cancer patients compared with healthy individuals. Yet the data in vitro were not predictive in regard to the radiotherapy outcome.}, language = {en} } @article{BratengeierGaineyFlentje2011, author = {Bratengeier, Klaus and Gainey, Mark B. and Flentje, Michael}, title = {Fast IMRT by increasing the beam number and reducing the number of segments}, series = {Radiation Oncology}, volume = {6}, journal = {Radiation Oncology}, number = {170}, doi = {10.1186/1748-717X-6-170}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137994}, year = {2011}, abstract = {Purpose The purpose of this work is to develop fast deliverable step and shoot IMRT technique. A reduction in the number of segments should theoretically be possible, whilst simultaneously maintaining plan quality, provided that the reduction is accompanied by an increased number of gantry angles. A benefit of this method is that the segment shaping could be performed during gantry motion, thereby reducing the delivery time. The aim was to find classes of such solutions whose plan quality can compete with conventional IMRT. Materials/Methods A planning study was performed. Step and shoot IMRT plans were created using direct machine parameter optimization (DMPO) as a reference. DMPO plans were compared to an IMRT variant having only one segment per angle ("2-Step Fast"). 2-Step Fast is based on a geometrical analysis of the topology of the planning target volume (PTV) and the organs at risk (OAR). A prostate/rectum case, spine metastasis/spinal cord, breast/lung and an artificial PTV/OAR combination of the ESTRO-Quasimodo phantom were used for the study. The composite objective value (COV), a quality score, and plan delivery time were compared. The delivery time for the DMPO reference plan and the 2-Step Fast IMRT technique was measured and calculated for two different linacs, a twelve year old Siemens Primus™ ("old" linac) and two Elekta Synergy™ "S" linacs ("new" linacs). Results 2-Step Fast had comparable or better quality than the reference DMPO plan. The number of segments was smaller than for the reference plan, the number of gantry angles was between 23 and 34. For the modern linac the delivery time was always smaller than that for the reference plan. The calculated (measured) values showed a mean delivery time reduction of 21\% (21\%) for the new linac, and of 7\% (3\%) for the old linac compared to the respective DMPO reference plans. For the old linac, the data handling time per beam was the limiting factor for the treatment time reduction. Conclusions 2-Step Fast plans are suited to reduce the delivery time, especially if the data handling time per beam is short. The plan quality can be retained or even increased for fewer segments provided more gantry angles are used.}, language = {en} }