@article{FleszarHanke2015, author = {Fleszar, Andrzej and Hanke, Werner}, title = {Two-dimensional metallicity with a large spin-orbit splitting: DFT calculations of the atomic, electronic, and spin structures of the Au/Ge(111)-(√3 x √3)R30° surface}, series = {Advances in Condensed Matter Physics}, volume = {2015}, journal = {Advances in Condensed Matter Physics}, number = {531498}, doi = {10.1155/2015/531498}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149221}, year = {2015}, abstract = {Density functional theory (DFT) is applied to study the atomic, electronic, and spin structures of the Au monolayer at the Ge(111) surface. It is found that the theoretically determined most stable atomic geometry is described by the conjugated honeycomb-chained-trimer (CHCT) model, in a very good agreement with experimental data. The calculated electronic structure of the system, being in qualitatively good agreement with the photoemission measurements, shows fingerprints of the many-body effects (self-interaction corrections) beyond the LDA or GGA approximations. The most interesting property of this surface system is the large spin splitting of its metallic surface bands and the undulating spin texture along the hexagonal Fermi contours, which highly resembles the spin texture at the Dirac state of the topological insulator Bi\(_{2}\)Te\(_{3}\). These properties make this system particularly interesting from both fundamental and technological points of view.}, language = {en} }