@article{StuckensenLamoEspinosaMuinosLopezetal.2019, author = {Stuckensen, Kai and Lamo-Espinosa, Jos{\´e} M. and Mui{\~n}os-L{\´o}pez, Emma and Ripalda-Cembor{\´a}in, Purificaci{\´o}n and L{\´o}pez-Mart{\´i}nez, Tania and Iglesias, Elena and Abizanda, Gloria and Andreu, Ion and Flandes-Iparraguirre, Mar{\´i}a and Pons-Villanueva, Juan and Elizalde, Reyes and Nickel, Joachim and Ewald, Andrea and Gbureck, Uwe and Pr{\´o}sper, Felipe and Groll, J{\"u}rgen and Granero-Molt{\´o}, Froil{\´a}n}, title = {Anisotropic cryostructured collagen scaffolds for efficient delivery of RhBMP-2 and enhanced bone regeneration}, series = {Materials}, volume = {12}, journal = {Materials}, number = {19}, issn = {1996-1944}, doi = {10.3390/ma12193105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195966}, year = {2019}, abstract = {In the treatment of bone non-unions, an alternative to bone autografts is the use of bone morphogenetic proteins (BMPs), e.g., BMP-2, BMP-7, with powerful osteoinductive and osteogenic properties. In clinical settings, these osteogenic factors are applied using absorbable collagen sponges for local controlled delivery. Major side effects of this strategy are derived from the supraphysiological doses of BMPs needed, which may induce ectopic bone formation, chronic inflammation, and excessive bone resorption. In order to increase the efficiency of the delivered BMPs, we designed cryostructured collagen scaffolds functionalized with hydroxyapatite, mimicking the structure of cortical bone (aligned porosity, anisotropic) or trabecular bone (random distributed porosity, isotropic). We hypothesize that an anisotropic structure would enhance the osteoconductive properties of the scaffolds by increasing the regenerative performance of the provided rhBMP-2. In vitro, both scaffolds presented similar mechanical properties, rhBMP-2 retention and delivery capacity, as well as scaffold degradation time. In vivo, anisotropic scaffolds demonstrated better bone regeneration capabilities in a rat femoral critical-size defect model by increasing the defect bridging. In conclusion, anisotropic cryostructured collagen scaffolds improve bone regeneration by increasing the efficiency of rhBMP-2 mediated bone healing.}, language = {en} } @article{RathBrandlHilleretal.2014, author = {Rath, Subha N. and Brandl, Andreas and Hiller, Daniel and Hoppe, Alexander and Gbureck, Uwe and Horch, Raymund E. and Boccaccini, Aldo R. and Kneser, Ulrich}, title = {Bioactive Copper-Doped Glass Scaffolds Can Stimulate Endothelial Cells in Co-Culture in Combination with Mesenchymal Stem Cells}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {12}, issn = {1932-6203}, doi = {10.1371/journal.pone.0113319}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114339}, year = {2014}, abstract = {Bioactive glass (BG) scaffolds are being investigated for bone tissue engineering applications because of their osteoconductive and angiogenic nature. However, to increase the in vivo performance of the scaffold, including enhancing the angiogenetic growth into the scaffolds, some researchers use different modifications of the scaffold including addition of inorganic ionic components to the basic BG composition. In this study, we investigated the in vitro biocompatibility and bioactivity of Cu2+-doped BG derived scaffolds in either BMSC (bone-marrow derived mesenchymal stem cells)-only culture or co-culture of BMSC and human dermal microvascular endothelial cells (HDMEC). In BMSC-only culture, cells were seeded either directly on the scaffolds (3D or direct culture) or were exposed to ionic dissolution products of the BG scaffolds, kept in permeable cell culture inserts (2D or indirect culture). Though we did not observe any direct osteoinduction of BMSCs by alkaline phosphatase (ALP) assay or by PCR, there was increased vascular endothelial growth factor (VEGF) expression, observed by PCR and ELISA assays. Additionally, the scaffolds showed no toxicity to BMSCs and there were healthy live cells found throughout the scaffold. To analyze further the reasons behind the increased VEGF expression and to exploit the benefits of the finding, we used the indirect method with HDMECs in culture plastic and Cu2+-doped BG scaffolds with or without BMSCs in cell culture inserts. There was clear observation of increased endothelial markers by both FACS analysis and acetylated LDL (acLDL) uptake assay. Only in presence of Cu2+-doped BG scaffolds with BMSCs, a high VEGF secretion was demonstrated by ELISA; and typical tubular structures were observed in culture plastics. We conclude that Cu2+-doped BG scaffolds release Cu2+, which in turn act on BMSCs to secrete VEGF. This result is of significance for the application of BG scaffolds in bone tissue engineering approaches.}, language = {en} } @article{FuchsKreczyBrueckneretal.2022, author = {Fuchs, Andreas and Kreczy, Dorothea and Br{\"u}ckner, Theresa and Gbureck, Uwe and Stahlhut, Philipp and Bengel, Melanie and Hoess, Andreas and Nies, Berthold and Bator, Julia and Klammert, Uwe and Linz, Christian and Ewald, Andrea}, title = {Bone regeneration capacity of newly developed spherical magnesium phosphate cement granules}, series = {Clinical Oral Investigations}, volume = {26}, journal = {Clinical Oral Investigations}, number = {3}, issn = {1436-3771}, doi = {10.1007/s00784-021-04231-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268872}, pages = {2619-2633}, year = {2022}, abstract = {Objectives Magnesium phosphate-based cements begin to catch more attention as bone substitute materials and especially as alternatives for the more commonly used calcium phosphates. In bone substitutes for augmentation purposes, atraumatic materials with good biocompatibility and resorbability are favorable. In the current study, we describe the in vivo testing of novel bone augmentation materials in form of spherical granules based on a calcium-doped magnesium phosphate (CaMgP) cement. Materials and Methods Granules with diameters between 500 and 710 μm were fabricated via the emulsification of CaMgP cement pastes in a lipophilic liquid. As basic material, two different CaMgP formulations were used. The obtained granules were implanted into drill hole defects at the distal femoral condyle of 27 New Zealand white rabbits for 6 and 12 weeks. After explantation, the femora were examined via X-ray diffraction analysis, histological staining, radiological examination, and EDX measurement. Results Both granule types display excellent biocompatibility without any signs of inflammation and allow for proper bone healing without the interposition of connective tissue. CaMgP granules show a fast and continuous degradation and enable fully adequate bone regeneration. Conclusions Due to their biocompatibility, their degradation behavior, and their completely spherical morphology, these CaMgP granules present a promising bone substitute material for bone augmentation procedures, especially in sensitive areas. Clinical Relevance The mostly insufficient local bone supply after tooth extractions complicates prosthetic dental restoration or makes it even impossible. Therefore, bone augmentation procedures are oftentimes inevitable. Spherical CaMgP granules may represent a valuable bone replacement material in many situations.}, language = {en} } @article{HettichSchierjottEppleetal.2019, author = {Hettich, Georg and Schierjott, Ronja A. and Epple, Matthias and Gbureck, Uwe and Heinemann, Sascha and Mozaffari-Jovein, Hadi and Grupp, Thomas M.}, title = {Calcium phosphate bone graft substitutes with high mechanical load capacity and high degree of interconnecting porosity}, series = {Materials}, volume = {12}, journal = {Materials}, number = {21}, issn = {1996-1944}, doi = {10.3390/ma12213471}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193233}, pages = {3471}, year = {2019}, abstract = {Bone graft substitutes in orthopedic applications have to fulfill various demanding requirements. Most calcium phosphate (CaP) bone graft substitutes are highly porous to achieve bone regeneration, but typically lack mechanical stability. This study presents a novel approach, in which a scaffold structure with appropriate properties for bone regeneration emerges from the space between specifically shaped granules. The granule types were tetrapods (TEPO) and pyramids (PYRA), which were compared to porous CaP granules (CALC) and morselized bone chips (BC). Bulk materials of the granules were mechanically loaded with a peak pressure of 4 MP; i.e., comparable to the load occurring behind an acetabular cup. Mechanical loading reduced the volume of CALC and BC considerably (89\% and 85\%, respectively), indicating a collapse of the macroporous structure. Volumes of TEPO and PYRA remained almost constant (94\% and 98\%, respectively). After loading, the porosity was highest for BC (46\%), lowest for CALC (25\%) and comparable for TEPO and PYRA (37\%). The pore spaces of TEPO and PYRA were highly interconnected in a way that a virtual object with a diameter of 150 µm could access 34\% of the TEPO volume and 36\% of the PYRA volume. This study shows that a bulk of dense CaP granules in form of tetrapods and pyramids can create a scaffold structure with load capacities suitable for the regeneration of an acetabular bone defect}, language = {en} } @article{FuchsHeiligMcDonoghetal.2020, author = {Fuchs, Konrad F. and Heilig, Philipp and McDonogh, Miriam and Boelch, Sebastian and Gbureck, Uwe and Meffert, Rainer H. and Hoelscher-Doht, Stefanie and Jordan, Martin C.}, title = {Cement-augmented screw fixation for calcaneal fracture treatment: a biomechanical study comparing two injectable bone substitutes}, series = {Journal of Orthopaedic Surgery and Research}, volume = {15}, journal = {Journal of Orthopaedic Surgery and Research}, doi = {10.1186/s13018-020-02009-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230336}, year = {2020}, abstract = {Background The role of cement-augmented screw fixation for calcaneal fracture treatment remains unclear. Therefore, this study was performed to biomechanically analyze screw osteosynthesis by reinforcement with either a calcium phosphate (CP)-based or polymethylmethacrylate (PMMA)-based injectable bone cement. Methods A calcaneal fracture (Sanders type IIA) including a central cancellous bone defect was generated in 27 synthetic bones, and the specimens were assigned to 3 groups. The first group was fixed with four screws (3.5 mm and 6.5 mm), the second group with screws and CP-based cement (Graftys (R) QuickSet; Graftys, Aix-en-Provence, France), and the third group with screws and PMMA-based cement (Traumacem (TM) V+; DePuy Synthes, Warsaw, IN, USA). Biomechanical testing was conducted to analyze peak-to-peak displacement, total displacement, and stiffness in following a standardized protocol. Results The peak-to-peak displacement under a 200-N load was not significantly different among the groups; however, peak-to-peak displacement under a 600- and 1000-N load as well as total displacement exhibited better stability in PMMA-augmented screw osteosynthesis compared to screw fixation without augmentation. The stiffness of the construct was increased by both CP- and PMMA-based cements. Conclusion Addition of an injectable bone cement to screw osteosynthesis is able to increase fixation strength in a biomechanical calcaneal fracture model with synthetic bones. In such cases, PMMA-based cements are more effective than CP-based cements because of their inherently higher compressive strength. However, whether this high strength is required in the clinical setting for early weight-bearing remains controversial, and the non-degradable properties of PMMA might cause difficulties during subsequent interventions in younger patients.}, language = {en} } @article{DiloksumpandeRuijterCastilhoetal.2020, author = {Diloksumpan, Paweena and de Ruijter, Myl{\`e}ne and Castilho, Miguel and Gbureck, Uwe and Vermonden, Tina and van Weeren, P Ren{\´e} and Malda, Jos and Levato, Riccardo}, title = {Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces}, series = {Biofabrication}, volume = {12}, journal = {Biofabrication}, number = {2}, doi = {10.1088/1758-5090/ab69d9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254005}, year = {2020}, abstract = {Multi-material 3D printing technologies that resolve features at different lengths down to the microscale open new avenues for regenerative medicine, particularly in the engineering of tissue interfaces. Herein, extrusion printing of a bone-biomimetic ceramic ink and melt electrowriting (MEW) of spatially organized polymeric microfibres are integrated for the biofabrication of an osteochondral plug, with a mechanically reinforced bone-to-cartilage interface. A printable physiological temperature-setting bioceramic, based on α-tricalcium phosphate, nanohydroxyapatite and a custom-synthesized biodegradable and crosslinkable poloxamer, was developed as bone support. The mild setting reaction of the bone ink enabled us to print directly within melt electrowritten polycaprolactone meshes, preserving their micro-architecture. Ceramic-integrated MEW meshes protruded into the cartilage region of the composite plug, and were embedded with mechanically soft gelatin-based hydrogels, laden with articular cartilage chondroprogenitor cells. Such interlocking design enhanced the hydrogel-to-ceramic adhesion strength >6.5-fold, compared with non-interlocking fibre architectures, enabling structural stability during handling and surgical implantation in osteochondral defects ex vivo. Furthermore, the MEW meshes endowed the chondral compartment with compressive properties approaching those of native cartilage (20-fold reinforcement versus pristine hydrogel). The osteal and chondral compartment supported osteogenesis and cartilage matrix deposition in vitro, and the neo-synthesized cartilage matrix further contributed to the mechanical reinforcement at the ceramic-hydrogel interface. This multi-material, multi-scale 3D printing approach provides a promising strategy for engineering advanced composite constructs for the regeneration of musculoskeletal and connective tissue interfaces.}, language = {en} } @article{OuhaddiCharbonnierPorgeetal.2023, author = {Ouhaddi, Yassine and Charbonnier, Baptiste and Porge, Juliette and Zhang, Yu-Ling and Garcia, Isadora and Gbureck, Uwe and Grover, Liam and Gilardino, Mirko and Harvey, Edward and Makhoul, Nicholas and Barralet, Jake}, title = {Development of neovasculature in axially vascularized calcium phosphate cement scaffolds}, series = {Journal of Functional Biomaterials}, volume = {14}, journal = {Journal of Functional Biomaterials}, number = {2}, issn = {2079-4983}, doi = {10.3390/jfb14020105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304026}, year = {2023}, abstract = {Augmenting the vascular supply to generate new tissues, a crucial aspect in regenerative medicine, has been challenging. Recently, our group showed that calcium phosphate can induce the formation of a functional neo-angiosome without the need for microsurgical arterial anastomosis. This was a preclinical proof of concept for biomaterial-induced luminal sprouting of large-diameter vessels. In this study, we investigated if sprouting was a general response to surgical injury or placement of an inorganic construct around the vessel. Cylindrical biocement scaffolds of differing chemistries were placed around the femoral vein. A contrast agent was used to visualize vessel ingrowth into the scaffolds. Cell populations in the scaffold were mapped using immunohistochemistry. Calcium phosphate scaffolds induced 2.7-3 times greater volume of blood vessels than calcium sulphate or magnesium phosphate scaffolds. Macrophage and vSMC populations were identified that changed spatially and temporally within the scaffold during implantation. NLRP3 inflammasome activation peaked at weeks 2 and 4 and then declined; however, IL-1β expression was sustained over the course of the experiment. IL-8, a promoter of angiogenesis, was also detected, and together, these responses suggest a role of sterile inflammation. Unexpectedly, the effect was distinct from an injury response as a result of surgical placement and also was not simply a foreign body reaction as a result of placing a rigid bioceramic next to a vein, since, while the materials tested had similar microstructures, only the calcium phosphates tested elicited an angiogenic response. This finding then reveals a potential path towards a new strategy for creating better pro-regenerative biomaterials.}, language = {en} } @article{NoHolzmeisterLuetal.2019, author = {No, Young Jung and Holzmeister, Ib and Lu, Zufu and Prajapati, Shubham and Shi, Jeffrey and Gbureck, Uwe and Zreiqat, Hala}, title = {Effect of Baghdadite Substitution on the Physicochemical Properties of Brushite Cements}, series = {Materials}, volume = {12}, journal = {Materials}, number = {10}, issn = {1996-1944}, doi = {10.3390/ma12101719}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196980}, year = {2019}, abstract = {Brushite cements have been clinically used for irregular bone defect filling applications, and various strategies have been previously reported to modify and improve their physicochemical properties such as strength and injectability. However, strategies to address other limitations of brushite cements such as low radiopacity or acidity without negatively impacting mechanical strength have not yet been reported. In this study, we report the effect of substituting the beta-tricalcium phosphate reactant in brushite cement with baghdadite (Ca\(_3\)ZrSi\(_2\)O\(_9\)), a bioactive zirconium-doped calcium silicate ceramic, at various concentrations (0, 5, 10, 20, 30, 50, and 100 wt\%) on the properties of the final brushite cement product. X-ray diffraction profiles indicate the dissolution of baghdadite during the cement reaction, without affecting the crystal structure of the precipitated brushite. EDX analysis shows that calcium is homogeneously distributed within the cement matrix, while zirconium and silicon form cluster-like aggregates with sizes ranging from few microns to more than 50 µm. X-ray images and µ-CT analysis indicate enhanced radiopacity with increased incorporation of baghdadite into brushite cement, with nearly a doubling of the aluminium equivalent thickness at 50 wt\% baghdadite substitution. At the same time, compressive strength of brushite cement increased from 12.9 ± 3.1 MPa to 21.1 ± 4.1 MPa with 10 wt\% baghdadite substitution. Culture medium conditioned with powdered brushite cement approached closer to physiological pH values when the cement is incorporated with increasing amounts of baghdadite (pH = 6.47 for pure brushite, pH = 7.02 for brushite with 20 wt\% baghdadite substitution). Baghdadite substitution also influenced the ionic content in the culture medium, and subsequently affected the proliferative activity of primary human osteoblasts in vitro. This study indicates that baghdadite is a beneficial additive to enhance the radiopacity, mechanical performance and cytocompatibility of brushite cement}, language = {en} } @article{HeiligSandnerJordanetal.2021, author = {Heilig, Philipp and Sandner, Phoebe and Jordan, Martin Cornelius and Jakubietz, Rafael Gregor and Meffert, Rainer Heribert and Gbureck, Uwe and Hoelscher-Doht, Stefanie}, title = {Experimental drillable magnesium phosphate cement is a promising alternative to conventional bone cements}, series = {Materials}, volume = {14}, journal = {Materials}, number = {8}, issn = {1996-1944}, doi = {10.3390/ma14081925}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236633}, year = {2021}, abstract = {Clinically used mineral bone cements lack high strength values, absorbability and drillability. Therefore, magnesium phosphate cements have recently received increasing attention as they unify a high mechanical performance with presumed degradation in vivo. To obtain a drillable cement formulation, farringtonite (Mg\(_3\)(PO\(_4\))\(_2\)) and magnesium oxide (MgO) were modified with the setting retardant phytic acid (C\(_6\)H\(_{18}\)O\(_{24}\)P\(_6\)). In a pre-testing series, 13 different compositions of magnesium phosphate cements were analyzed concentrating on the clinical demands for application. Of these 13 composites, two cement formulations with different phytic acid content (22.5 wt\% and 25 wt\%) were identified to meet clinical demands. Both formulations were evaluated in terms of setting time, injectability, compressive strength, screw pullout tests and biomechanical tests in a clinically relevant fracture model. The cements were used as bone filler of a metaphyseal bone defect alone, and in combination with screws drilled through the cement. Both formulations achieved a setting time of 5 min 30 s and an injectability of 100\%. Compressive strength was shown to be ~12-13 MPa and the overall displacement of the reduced fracture was <2 mm with and without screws. Maximum load until reduced fracture failure was ~2600 N for the cements only and ~3800 N for the combination with screws. Two new compositions of magnesium phosphate cements revealed high strength in clinically relevant biomechanical test set-ups and add clinically desired characteristics to its strength such as injectability and drillability.}, language = {en} } @article{GoetzHoleczekGrolletal.2021, author = {G{\"o}tz, Lisa-Marie and Holeczek, Katharina and Groll, J{\"u}rgen and J{\"u}ngst, Tomasz and Gbureck, Uwe}, title = {Extrusion-Based 3D Printing of Calcium Magnesium Phosphate Cement Pastes for Degradable Bone Implants}, series = {Materials}, volume = {14}, journal = {Materials}, number = {18}, issn = {1996-1944}, doi = {10.3390/ma14185197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246110}, year = {2021}, abstract = {This study aimed to develop printable calcium magnesium phosphate pastes that harden by immersion in ammonium phosphate solution post-printing. Besides the main mineral compound, biocompatible ceramic, magnesium oxide and hydroxypropylmethylcellulose (HPMC) were the crucial components. Two pastes with different powder to liquid ratios of 1.35 g/mL and 1.93 g/mL were characterized regarding their rheological properties. Here, ageing over the course of 24 h showed an increase in viscosity and extrusion force, which was attributed to structural changes in HPMC as well as the formation of magnesium hydroxide by hydration of MgO. The pastes enabled printing of porous scaffolds with good dimensional stability and enabled a setting reaction to struvite when immersed in ammonium phosphate solution. Mechanical performance under compression was approx. 8-20 MPa as a monolithic structure and 1.6-3.0 MPa for printed macroporous scaffolds, depending on parameters such as powder to liquid ratio, ageing time, strand thickness and distance.}, language = {en} }