@article{GruenewaldLangeWerneretal.2017, author = {Gr{\"u}newald, Benedikt and Lange, Maren D and Werner, Christian and O'Leary, Aet and Weishaupt, Andreas and Popp, Sandy and Pearce, David A and Wiendl, Heinz and Reif, Andreas and Pape, Hans C and Toyka, Klaus V and Sommer, Claudia and Geis, Christian}, title = {Defective synaptic transmission causes disease signs in a mouse model of juvenile neuronal ceroid lipofuscinosis}, series = {eLife}, volume = {6}, journal = {eLife}, number = {e28685}, doi = {10.7554/eLife.28685}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170004}, year = {2017}, abstract = {Juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease) caused by mutations in the CLN3 gene is the most prevalent inherited neurodegenerative disease in childhood resulting in widespread central nervous system dysfunction and premature death. The consequences of CLN3 mutation on the progression of the disease, on neuronal transmission, and on central nervous network dysfunction are poorly understood. We used Cln3 knockout (Cln3\(^{Δex1-6}\)) mice and found increased anxiety-related behavior and impaired aversive learning as well as markedly affected motor function including disordered coordination. Patch-clamp and loose-patch recordings revealed severely affected inhibitory and excitatory synaptic transmission in the amygdala, hippocampus, and cerebellar networks. Changes in presynaptic release properties may result from dysfunction of CLN3 protein. Furthermore, loss of calbindin, neuropeptide Y, parvalbumin, and GAD65-positive interneurons in central networks collectively support the hypothesis that degeneration of GABAergic interneurons may be the cause of supraspinal GABAergic disinhibition.}, language = {en} } @article{GruenewaldBennettToykaetal.2016, author = {Gr{\"u}newald, Benedikt and Bennett, Jeffrey L. and Toyka, Klaus V. and Sommer, Claudia and Geis, Christian}, title = {Efficacy of Polyvalent Human Immunoglobulins in an Animal Model of Neuromyelitis Optica Evoked by Intrathecal Anti-Aquaporin 4 Antibodies}, series = {International Journal of Molecular Sciences}, volume = {17}, journal = {International Journal of Molecular Sciences}, number = {9}, doi = {10.3390/ijms17091407}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166000}, pages = {1407}, year = {2016}, abstract = {Neuromyelitis Optica Spectrum Disorders (NMOSD) are associated with autoantibodies (ABs) targeting the astrocytic aquaporin-4 water channels (AQP4-ABs). These ABs have a direct pathogenic role by initiating a variety of immunological and inflammatory processes in the course of disease. In a recently-established animal model, chronic intrathecal passive-transfer of immunoglobulin G from NMOSD patients (NMO-IgG), or of recombinant human AQP4-ABs (rAB-AQP4), provided evidence for complementary and immune-cell independent effects of AQP4-ABs. Utilizing this animal model, we here tested the effects of systemically and intrathecally applied pooled human immunoglobulins (IVIg) using a preventive and a therapeutic paradigm. In NMO-IgG animals, prophylactic application of systemic IVIg led to a reduced median disease score of 2.4 on a 0-10 scale, in comparison to 4.1 with sham treatment. Therapeutic IVIg, applied systemically after the 10th intrathecal NMO-IgG injection, significantly reduced the disease score by 0.8. Intrathecal IVIg application induced a beneficial effect in animals with NMO-IgG (median score IVIg 1.6 vs. sham 3.7) or with rAB-AQP4 (median score IVIg 2.0 vs. sham 3.7). We here provide evidence that treatment with IVIg ameliorates disease symptoms in this passive-transfer model, in analogy to former studies investigating passive-transfer animal models of other antibody-mediated disorders.}, language = {en} }