@article{RauschenbergervonWardenburgSchaeferetal.2020, author = {Rauschenberger, Vera and von Wardenburg, Niels and Schaefer, Natascha and Ogino, Kazutoyo and Hirata, Hiromi and Lillesaar, Christina and Kluck, Christoph J. and Meinck, Hans-Michael and Borrmann, Marc and Weishaupt, Andreas and Doppler, Kathrin and Wickel, Jonathan and Geis, Christian and Sommer, Claudia and Villmann, Carmen}, title = {Glycine Receptor Autoantibodies Impair Receptor Function and Induce Motor Dysfunction}, series = {Annals of Neurology}, volume = {88}, journal = {Annals of Neurology}, number = {3}, doi = {10.1002/ana.25832}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216005}, pages = {544 -- 561}, year = {2020}, abstract = {Objective Impairment of glycinergic neurotransmission leads to complex movement and behavioral disorders. Patients harboring glycine receptor autoantibodies suffer from stiff-person syndrome or its severe variant progressive encephalomyelitis with rigidity and myoclonus. Enhanced receptor internalization was proposed as the common molecular mechanism upon autoantibody binding. Although functional impairment of glycine receptors following autoantibody binding has recently been investigated, it is still incompletely understood. Methods A cell-based assay was used for positive sample evaluation. Glycine receptor function was assessed by electrophysiological recordings and radioligand binding assays. The in vivo passive transfer of patient autoantibodies was done using the zebrafish animal model. Results Glycine receptor function as assessed by glycine dose-response curves showed significantly decreased glycine potency in the presence of patient sera. Upon binding of autoantibodies from 2 patients, a decreased fraction of desensitized receptors was observed, whereas closing of the ion channel remained fast. The glycine receptor N-terminal residues \(^{29}\)A to \(^{62}\)G were mapped as a common epitope of glycine receptor autoantibodies. An in vivo transfer into the zebrafish animal model generated a phenotype with disturbed escape behavior accompanied by a reduced number of glycine receptor clusters in the spinal cord of affected animals. Interpretation Autoantibodies against the extracellular domain mediate alterations of glycine receptor physiology. Moreover, our in vivo data demonstrate that the autoantibodies are a direct cause of the disease, because the transfer of human glycine receptor autoantibodies to zebrafish larvae generated impaired escape behavior in the animal model compatible with abnormal startle response in stiff-person syndrome or progressive encephalitis with rigidity and myoclonus patients.}, language = {en} } @article{RauschenbergerPiroKasaragodetal.2023, author = {Rauschenberger, Vera and Piro, Inken and Kasaragod, Vikram Babu and H{\"o}rlin, Verena and Eckes, Anna-Lena and Kluck, Christoph J. and Schindelin, Hermann and Meinck, Hans-Michael and Wickel, Jonathan and Geis, Christian and T{\"u}z{\"u}n, Erdem and Doppler, Kathrin and Sommer, Claudia and Villmann, Carmen}, title = {Glycine receptor autoantibody binding to the extracellular domain is independent from receptor glycosylation}, series = {Frontiers in Molecular Neuroscience}, volume = {16}, journal = {Frontiers in Molecular Neuroscience}, doi = {10.3389/fnmol.2023.1089101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304206}, year = {2023}, abstract = {Glycine receptor (GlyR) autoantibodies are associated with stiff-person syndrome and the life-threatening progressive encephalomyelitis with rigidity and myoclonus in children and adults. Patient histories show variability in symptoms and responses to therapeutic treatments. A better understanding of the autoantibody pathology is required to develop improved therapeutic strategies. So far, the underlying molecular pathomechanisms include enhanced receptor internalization and direct receptor blocking altering GlyR function. A common epitope of autoantibodies against the GlyRα1 has been previously defined to residues 1A-33G at the N-terminus of the mature GlyR extracellular domain. However, if other autoantibody binding sites exist or additional GlyR residues are involved in autoantibody binding is yet unknown. The present study investigates the importance of receptor glycosylation for binding of anti-GlyR autoantibodies. The glycine receptor α1 harbors only one glycosylation site at the amino acid residue asparagine 38 localized in close vicinity to the identified common autoantibody epitope. First, non-glycosylated GlyRs were characterized using protein biochemical approaches as well as electrophysiological recordings and molecular modeling. Molecular modeling of non-glycosylated GlyRα1 did not show major structural alterations. Moreover, non-glycosylation of the GlyRα1N38Q did not prevent the receptor from surface expression. At the functional level, the non-glycosylated GlyR demonstrated reduced glycine potency, but patient GlyR autoantibodies still bound to the surface-expressed non-glycosylated receptor protein in living cells. Efficient adsorption of GlyR autoantibodies from patient samples was possible by binding to native glycosylated and non-glycosylated GlyRα1 expressed in living not fixed transfected HEK293 cells. Binding of patient-derived GlyR autoantibodies to the non-glycosylated GlyRα1 offered the possibility to use purified non-glycosylated GlyR extracellular domain constructs coated on ELISA plates and use them as a fast screening readout for the presence of GlyR autoantibodies in patient serum samples. Following successful adsorption of patient autoantibodies by GlyR ECDs, binding to primary motoneurons and transfected cells was absent. Our results indicate that the glycine receptor autoantibody binding is independent of the receptor's glycosylation state. Purified non-glycosylated receptor domains harbouring the autoantibody epitope thus provide, an additional reliable experimental tool besides binding to native receptors in cell-based assays for detection of autoantibody presence in patient sera.}, language = {en} }