@article{GroebnerWorstWeischenfeldtetal.2018, author = {Gr{\"o}bner, Susanne N. and Worst, Barbara C. and Weischenfeldt, Joachim and Buchhalter, Ivo and Kleinheinz, Kortine and Rudneva, Vasilisa A. and Johann, Pascal D. and Balasubramanian, Gnana Prakash and Segura-Wang, Maia and Brabetz, Sebastian and Bender, Sebastian and Hutter, Barbara and Sturm, Dominik and Pfaff, Elke and H{\"u}bschmann, Daniel and Zipprich, Gideon and Heinold, Michael and Eils, J{\"u}rgen and Lawerenz, Christian and Erkek, Serap and Lambo, Sander and Waszak, Sebastian and Blattmann, Claudia and Borkhardt, Arndt and Kuhlen, Michaela and Eggert, Angelika and Fulda, Simone and Gessler, Manfred and Wegert, Jenny and Kappler, Roland and Baumhoer, Daniel and Stefan, Burdach and Kirschner-Schwabe, Renate and Kontny, Udo and Kulozik, Andreas E. and Lohmann, Dietmar and Hettmer, Simone and Eckert, Cornelia and Bielack, Stefan and Nathrath, Michaela and Niemeyer, Charlotte and Richter, G{\"u}nther H. and Schulte, Johannes and Siebert, Reiner and Westermann, Frank and Molenaar, Jan J. and Vassal, Gilles and Witt, Hendrik and Burkhardt, Birgit and Kratz, Christian P. and Witt, Olaf and van Tilburg, Cornelis M. and Kramm, Christof M. and Fleischhack, Gudrun and Dirksen, Uta and Rutkowski, Stefan and Fr{\"u}hwald, Michael and Hoff, Katja von and Wolf, Stephan and Klingebeil, Thomas and Koscielniak, Ewa and Landgraf, Pablo and Koster, Jan and Resnick, Adam C. and Zhang, Jinghui and Liu, Yanling and Zhou, Xin and Waanders, Angela J. and Zwijnenburg, Danny A. and Raman, Pichai and Brors, Benedikt and Weber, Ursula D. and Northcott, Paul A. and Pajtler, Kristian W. and Kool, Marcel and Piro, Rosario M. and Korbel, Jan O. and Schlesner, Matthias and Eils, Roland and Jones, David T. W. and Lichter, Peter and Chavez, Lukas and Zapatka, Marc and Pfister, Stefan M.}, title = {The landscape of genomic alterations across childhood cancers}, series = {Nature}, volume = {555}, journal = {Nature}, organization = {ICGC PedBrain-Seq Project, ICGC MMML-Seq Project,}, doi = {10.1038/nature25480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229579}, pages = {321-327}, year = {2018}, abstract = {Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8\% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50\% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.}, language = {en} } @article{WegertVokuhZiegleretal.2017, author = {Wegert, Jenny and Vokuh, Christian and Ziegler, Barbara and Ernestus, Karen and Leuschner, Ivo and Furtw{\"a}ngler, Rhoikos and Graf, Norbert and Gessler, Manfred}, title = {TP53 alterations in Wilms tumour represent progression events with strong intratumour heterogeneity that are closely linked but not limited to anaplasia}, series = {The Journal of Pathology: Clinical Research}, volume = {3}, journal = {The Journal of Pathology: Clinical Research}, doi = {10.1002/cjp2.77}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158302}, pages = {234-248}, year = {2017}, abstract = {TP53 mutations have been associated with anaplasia in Wilms tumour, which conveys a high risk for relapse and fatal outcome. Nevertheless, TP53 alterations have been reported in no more than 60\% of anaplastic tumours, and recent data have suggested their presence in tumours that do not fulfil the criteria for anaplasia, questioning the clinical utility of TP53 analysis. Therefore, we characterized the TP53 status in 84 fatal cases of Wilms tumour, irrespective of histological subtype. We identified TP53 alterations in at least 90\% of fatal cases of anaplastic Wilms tumour, and even more when diffuse anaplasia was present, indicating a very strong if not absolute coupling between anaplasia and deregulation of p53 function. Unfortunately, TP53 mutations do not provide additional predictive value in anaplastic tumours since the same mutation rate was found in a cohort of non-fatal anaplastic tumours. When classified according to tumour stage, patients with stage I diffuse anaplastic tumours still had a high chance of survival (87\%), but this rate dropped to 26\% for stages II-IV. Thus, volume of anaplasia or possible spread may turn out to be critical parameters. Importantly, among non-anaplastic fatal tumours, 26\% had TP53 alterations, indicating that TP53 screening may identify additional cases at risk. Several of these non-anaplastic tumours fulfilled some criteria for anaplasia, for example nuclear unrest, suggesting that such partial phenotypes should be under special scrutiny to enhance detection of high-risk tumours via TP53 screening. A major drawback is that these alterations are secondary changes that occur only later in tumour development, leading to striking intratumour heterogeneity that requires multiple biopsies and analysis guided by histological criteria. In conclusion, we found a very close correlation between histological signs of anaplasia and TP53 alterations. The latter may precede development of anaplasia and thereby provide diagnostic value pointing towards aggressive disease.}, language = {en} }