@phdthesis{Glogger2018, author = {Glogger, Marius}, title = {Single-molecule fluorescence microscopy in live \(Trypanosoma\) \(brucei\) and model membranes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169222}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Der eukaryotische Parasit Trypanosoma brucei hat komplexe Strategien entwickelt um der Immunantwort eines Wirtes zu entkommen und eine persistente Infektion innerhalb dessen aufrechtzuerhalten. Ein zentrales Element seiner Verteidigungsstrategie st{\"u}tzt sich auf die Schutzfunktion seines Proteinmantels auf der Zelloberfl{\"a}che. Dieser Mantel besteht aus einer dichten Schicht aus identischen, Glykosylphosphatidylinositol (GPI)-verankerten variablen Oberfl{\"a}chenglykoproteinen (VSG). Der VSG Mantel verhindert die Erkennung der darunterliegenden, invarianten Epitope durch das Immunsystem. Obwohl es notwendig ist die Funktionsweise des VSG Mantels zu verstehen, vor allem um ihn als m{\"o}gliches Angriffsziel gegen den Parasiten zu verwenden, sind seine biophysikalischen Eigenschaften bisher nur unzureichend verstanden. Dies ist vor allem der Tatsache geschuldet, dass die hohe Motilit{\"a}t der Parasiten mikroskopische Studien in lebenden Zellen bisher weitestgehend verhinderten. In der vorliegenden Arbeit wird nun hochmoderne Einzelmolek{\"u}l-Fluoreszenzmikroskopie (EMFM) als M{\"o}glichkeit f{\"u}r mikroskopische Untersuchungen im Forschungsbereich der Trypanosomen vorgestellt. Die Arbeit umfasst Untersuchungen der VSG Dynamik unter definierten Bedingungen k{\"u}nstlicher Membransysteme. Es wurde zuerst der Einfluss der lateralen Proteindichte auf die VSG Diffusion untersucht. Experimente mittels Fluoreszenz- Wiederkehr nach irreversiblem Photobleichen und komplement{\"a}re Einzelmolek{\"u}l- Verfolgungs Experimente offenbarten, dass ein molekularer Diffusionsschwellenwert existiert. {\"U}ber diesem Schwellenwert wurde eine dichteabh{\"a}nige Reduzierung des Diffusionskoeffizienten gemessen. Eine relative Quantifizierung der rekonstituierten VSGs verdeutlichte, dass der Oberfl{\"a}chenmantel der Trypanosomen sehr nahe an diesem Schwellenwert agiert. Der VSG Mantel ist optimiert um eine hohe Proteindichte bei gleichzeitiger hoher Mobilit{\"a}t der VSGs zu gew{\"a}hrleisten. Des Weiteren wurde der Einfluss der VSG N-Glykosylierung auf die Diffusion des Proteins quantitativ untersucht. Die Messungen ergaben, dass die N-Glykosylierung dazu beitr{\"a}gt eine hohe Mobilit{\"a}t bei hohen Proteindichten aufrechtzuerhalten. Eine detaillierte Analyse von VSG Trajektorien offenbarte, dass zwei unterschiedliche Populationen frei diffundierender VSGs in der k{\"u}nstlichen Membran vorlagen. K{\"u}rzlich wurde entdeckt, dass VSGs zwei strukturell unterschiedliche Konformationen annehmen k{\"o}nnen. Die Messungen in der Arbeit stimmen mit diesen Beschreibungen {\"u}berein. Die Ergebnisse der EMFM in k{\"u}nstlichen Membranen wurden durch VSG Einzelmolek{\"u}l- Verfolgungs Experimente auf lebenden Zellen erg{\"a}nzt. Es wurde eine hohe Mobilit{\"a}t und Dynamik einzelner VSGs gemessen, was die allgemein dynamische Natur des VSG Mantels verdeutlicht. Dies f{\"u}hrte zu der Schlussfolgerung, dass der VSG Mantel auf lebenden Trypanosomen ein dichter und dennoch dynamischer Schutzmantel ist. Die F{\"a}higkeit der VSGs ihre Konformation flexibel anzupassen, unterst{\"u}tzt das Erhalten der Fluidit{\"a}t bei variablen Dichten. Diese Eigenschaften des VSG Mantels sind elementar f{\"u}r die Aufrechterhaltung einer presistenden Infektion eines Wirtes. In dieser Arbeit werden des Weiteren verschiedene, auf Hydrogel basierende Einbettungsmethoden vorgestellt. Diese erm{\"o}glichten die Zellimmobilisierung und erlaubten EMFM in lebenden Trypanosomen. Die Hydrogele wiesen eine hohe Zytokompatibilit{\"a}t auf. Die Zellen {\"u}berlebten in den Gelen f{\"u}r eine Stunde nach Beginn der Immobilisierung. Die Hydrogele erf{\"u}llten die Anforderungen der Superresolution Mikroskopie (SRM) da sie eine geringe Autofluoreszenz im Spektralbereich der verwendeten Fluorophore besaßen. Mittels SRM konnte nachgewiesen werden, dass die Hydrogele die Zellen effizient immobilisierten. Als erstes Anwendungsbeispiel der Methode wurde die Organisation der Plasmamembran in lebenden Trypanosomen untersucht. Die Untersuchung eines fluoreszenten Tracers in der inneren Membranschicht ergab, dass dessen Verteilung nicht homogen war. Es wurden spezifische Membrandom{\"a}nen gefunden, in denen das Molek{\"u}l entweder vermehrt oder vermindert auftrat. Dies f{\"u}hrte zu der Schlussfolgerung, dass diese Verteilung durch eine Interaktion des Tracers mit Proteinen des zellul{\"a}ren Zytoskeletts zustande kam. Die in dieser Arbeit pr{\"a}sentierten Ergebnisse zeigen, dass EMFM erfolgreich f{\"u}r verschiedene biologische Untersuchungen im Forschungsfeld der Trypanosomen angewendet werden kann. Dies gilt zum Beispiel f{\"u}r die Untersuchung von der VSG Dynamik in k{\"u}nstlichen Membransystemen, aber auch f{\"u}r Studien in lebenden Zellen unter Verwendung der auf Hydrogelen basierenden Zelleinbettung.}, subject = {Trypanosoma brucei}, language = {en} } @article{HartelGloggerJonesetal.2016, author = {Hartel, Andreas J.W. and Glogger, Marius and Jones, Nicola G. and Abuillan, Wasim and Batram, Christopher and Hermann, Anne and Fenz, Susanne F. and Tanaka, Motomu and Engstler, Markus}, title = {N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171368}, year = {2016}, abstract = {The protein density in biological membranes can be extraordinarily high, but the impact of molecular crowding on the diffusion of membrane proteins has not been studied systematically in a natural system. The diversity of the membrane proteome of most cells may preclude systematic studies. African trypanosomes, however, feature a uniform surface coat that is dominated by a single type of variant surface glycoprotein (VSG). Here we study the density-dependence of the diffusion of different glycosylphosphatidylinositol-anchored VSG-types on living cells and in artificial membranes. Our results suggest that a specific molecular crowding threshold (MCT) limits diffusion and hence affects protein function. Obstacles in the form of heterologous proteins compromise the diffusion coefficient and the MCT. The trypanosome VSG-coat operates very close to its MCT. Importantly, our experiments show that N-linked glycans act as molecular insulators that reduce retarding intermolecular interactions allowing membrane proteins to function correctly even when densely packed.}, language = {en} }