@article{PereiraTrivanovićStahlhutetal.2022, author = {Pereira, Ana Rita and Trivanović, Drenka and Stahlhut, Philipp and Rudert, Maximilian and Groll, J{\"u}rgen and Herrmann, Marietta}, title = {Preservation of the na{\"i}ve features of mesenchymal stromal cells in vitro: Comparison of cell- and bone-derived decellularized extracellular matrix}, series = {Journal of Tissue Engineering}, volume = {13}, journal = {Journal of Tissue Engineering}, doi = {10.1177/20417314221074453}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268835}, pages = {1-12}, year = {2022}, abstract = {The fate and behavior of bone marrow mesenchymal stem/stromal cells (BM-MSC) is bidirectionally influenced by their microenvironment, the stem cell niche, where a magnitude of biochemical and physical cues communicate in an extremely orchestrated way. It is known that simplified 2D in vitro systems for BM-MSC culture do not represent their na{\"i}ve physiological environment. Here, we developed four different 2D cell-based decellularized matrices (dECM) and a 3D decellularized human trabecular-bone scaffold (dBone) to evaluate BM-MSC behavior. The obtained cell-derived matrices provided a reliable tool for cell shape-based analyses of typical features associated with osteogenic differentiation at high-throughput level. On the other hand, exploratory proteomics analysis identified native bone-specific proteins selectively expressed in dBone but not in dECM models. Together with its architectural complexity, the physico-chemical properties of dBone triggered the upregulation of stemness associated genes and niche-related protein expression, proving in vitro conservation of the na{\"i}ve features of BM-MSC.}, language = {en} } @article{SeifertGruberGburecketal.2021, author = {Seifert, Annika and Gruber, Julia and Gbureck, Uwe and Groll, J{\"u}rgen}, title = {Morphological control of freeze-structured scaffolds by selective temperature and material control in the ice-templating process}, series = {Advanced Engineering Materials}, volume = {24}, journal = {Advanced Engineering Materials}, number = {3}, doi = {10.1002/adem.202100860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256330}, year = {2021}, abstract = {Herein, it is aimed to highlight the importance of the process parameter choice during directional solidification of polymer solutions, as they have a significant influence on the pore structure and orientation. Biopolymer solutions (alginate and chitosan) are directionally frozen, while systematically varying parameters such as the external temperature gradient, the temperature of the overall system, and the temperatures of the cooling surfaces. In addition, the effect of material properties such as molecular weight, solution concentration, or viscosity on the sample morphology is investigated. By selecting appropriate temperature gradients and cooling surface temperatures, aligned pores ranging in size between (50 ± 22) μm and (144 ± 56) μm are observed in the alginate samples, whereas the pore orientation is influenced by altering the external temperature gradient. As this gradient increases, the pores are increasingly oriented perpendicular to the sample surface. This is also observed in the chitosan samples. However, if the overall system is too cold, that is, using temperatures of the lower cooling surface down to -60 °C combined with low temperatures of the upper cooling surface, control over pore orientation is lost. This is also found when viscosity of chitosan solutions is above ≈5 Pas near the freezing point.}, language = {en} } @article{StuckensenLamoEspinosaMuinosLopezetal.2019, author = {Stuckensen, Kai and Lamo-Espinosa, Jos{\´e} M. and Mui{\~n}os-L{\´o}pez, Emma and Ripalda-Cembor{\´a}in, Purificaci{\´o}n and L{\´o}pez-Mart{\´i}nez, Tania and Iglesias, Elena and Abizanda, Gloria and Andreu, Ion and Flandes-Iparraguirre, Mar{\´i}a and Pons-Villanueva, Juan and Elizalde, Reyes and Nickel, Joachim and Ewald, Andrea and Gbureck, Uwe and Pr{\´o}sper, Felipe and Groll, J{\"u}rgen and Granero-Molt{\´o}, Froil{\´a}n}, title = {Anisotropic cryostructured collagen scaffolds for efficient delivery of RhBMP-2 and enhanced bone regeneration}, series = {Materials}, volume = {12}, journal = {Materials}, number = {19}, issn = {1996-1944}, doi = {10.3390/ma12193105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195966}, year = {2019}, abstract = {In the treatment of bone non-unions, an alternative to bone autografts is the use of bone morphogenetic proteins (BMPs), e.g., BMP-2, BMP-7, with powerful osteoinductive and osteogenic properties. In clinical settings, these osteogenic factors are applied using absorbable collagen sponges for local controlled delivery. Major side effects of this strategy are derived from the supraphysiological doses of BMPs needed, which may induce ectopic bone formation, chronic inflammation, and excessive bone resorption. In order to increase the efficiency of the delivered BMPs, we designed cryostructured collagen scaffolds functionalized with hydroxyapatite, mimicking the structure of cortical bone (aligned porosity, anisotropic) or trabecular bone (random distributed porosity, isotropic). We hypothesize that an anisotropic structure would enhance the osteoconductive properties of the scaffolds by increasing the regenerative performance of the provided rhBMP-2. In vitro, both scaffolds presented similar mechanical properties, rhBMP-2 retention and delivery capacity, as well as scaffold degradation time. In vivo, anisotropic scaffolds demonstrated better bone regeneration capabilities in a rat femoral critical-size defect model by increasing the defect bridging. In conclusion, anisotropic cryostructured collagen scaffolds improve bone regeneration by increasing the efficiency of rhBMP-2 mediated bone healing.}, language = {en} } @article{DoganScheuringWagneretal.2021, author = {Dogan, Leyla and Scheuring, Ruben and Wagner, Nicole and Ueda, Yuichiro and Schmidt, Sven and W{\"o}rsd{\"o}rfer, Philipp and Groll, J{\"u}rgen and Erg{\"u}n, S{\"u}leyman}, title = {Human iPSC-derived mesodermal progenitor cells preserve their vasculogenesis potential after extrusion and form hierarchically organized blood vessels}, series = {Biofabrication}, volume = {13}, journal = {Biofabrication}, number = {4}, doi = {10.1088/1758-5090/ac26ac}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254046}, year = {2021}, abstract = {Post-fabrication formation of a proper vasculature remains an unresolved challenge in bioprinting. Established strategies focus on the supply of the fabricated structure with nutrients and oxygen and either rely on the mere formation of a channel system using fugitive inks or additionally use mature endothelial cells and/or peri-endothelial cells such as smooth muscle cells for the formation of blood vessels in vitro. Functional vessels, however, exhibit a hierarchical organization and multilayered wall structure that is important for their function. Human induced pluripotent stem cell-derived mesodermal progenitor cells (hiMPCs) have been shown to possess the capacity to form blood vessels in vitro, but have so far not been assessed for their applicability in bioprinting processes. Here, we demonstrate that hiMPCs, after formulation into an alginate/collagen type I bioink and subsequent extrusion, retain their ability to give rise to the formation of complex vessels that display a hierarchical network in a process that mimics the embryonic steps of vessel formation during vasculogenesis. Histological evaluations at different time points of extrusion revealed the initial formation of spheres, followed by lumen formation and further structural maturation as evidenced by building a multilayered vessel wall and a vascular network. These findings are supported by immunostainings for endothelial and peri-endothelial cell markers as well as electron microscopic analyses at the ultrastructural level. Moreover, endothelial cells in capillary-like vessel structures deposited a basement membrane-like matrix at the basal side between the vessel wall and the alginate-collagen matrix. After transplantation of the printed constructs into the chicken chorioallantoic membrane (CAM) the printed vessels connected to the CAM blood vessels and get perfused in vivo. These results evidence the applicability and great potential of hiMPCs for the bioprinting of vascular structures mimicking the basic morphogenetic steps of de novo vessel formation during embryogenesis.}, language = {en} } @article{BotheDeubelHesseetal.2019, author = {Bothe, Friederike and Deubel, Anne-Kathrin and Hesse, Eliane and Lotz, Benedict and Groll, J{\"u}rgen and Werner, Carsten and Richter, Wiltrud and Hagmann, Sebastien}, title = {Treatment of focal cartilage defects in minipigs with zonal chondrocyte/mesenchymal progenitor cell constructs}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {3}, issn = {1422-0067}, doi = {10.3390/ijms20030653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285118}, year = {2019}, abstract = {Despite advances in cartilage repair strategies, treatment of focal chondral lesions remains an important challenge to prevent osteoarthritis. Articular cartilage is organized into several layers and lack of zonal organization of current grafts is held responsible for insufficient biomechanical and biochemical quality of repair-tissue. The aim was to develop a zonal approach for cartilage regeneration to determine whether the outcome can be improved compared to a non-zonal strategy. Hydrogel-filled polycaprolactone (PCL)-constructs with a chondrocyte-seeded upper-layer deemed to induce hyaline cartilage and a mesenchymal stromal cell (MSC)-containing bottom-layer deemed to induce calcified cartilage were compared to chondrocyte-based non-zonal grafts in a minipig model. Grafts showed comparable hardness at implantation and did not cause visible signs of inflammation. After 6 months, X-ray microtomography (µCT)-analysis revealed significant bone-loss in both treatment groups compared to empty controls. PCL-enforcement and some hydrogel-remnants were retained in all defects, but most implants were pressed into the subchondral bone. Despite important heterogeneities, both treatments reached a significantly lower modified O'Driscoll-score compared to empty controls. Thus, PCL may have induced bone-erosion during joint loading and misplacement of grafts in vivo precluding adequate permanent orientation of zones compared to surrounding native cartilage.}, language = {en} } @article{BrandForsterBoecketal.2022, author = {Brand, Jessica S. and Forster, Leonard and B{\"o}ck, Thomas and Stahlhut, Philipp and Teßmar, J{\"o}rg and Groll, J{\"u}rgen and Albrecht, Krystyna}, title = {Covalently Cross-Linked Pig Gastric Mucin Hydrogels Prepared by Radical-Based Chain-Growth and Thiol-ene Mechanisms}, series = {Macromolecular Bioscience}, volume = {22}, journal = {Macromolecular Bioscience}, number = {4}, doi = {10.1002/mabi.202100274}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318453}, year = {2022}, abstract = {Mucin, a high molecular mass hydrophilic glycoprotein, is the main component of mucus that coats every wet epithelium in animals. It is thus intrinsically biocompatible, and with its protein backbone and the o-glycosidic bound oligosaccharides, it contains a plethora of functional groups which can be used for further chemical modifications. Here, chain-growth and step-growth (thiol-ene) free-radical cross-linked hydrogels prepared from commercially available pig gastric mucin (PGM) are introduced and compared as cost-efficient and easily accessible alternative to the more broadly applied bovine submaxillary gland mucin. For this, PGM is functionalized with photoreactive acrylate groups or allyl ether moieties, respectively. Whereas homopolymerization of acrylate-functionalized polymers is performed, for thiol-ene cross-linking, the allyl-ether-functionalized PGM is cross-linked with thiol-functionalized hyaluronic acid. Morphology, mechanical properties, and cell compatibility of both kinds of PGM hydrogels are characterized and compared. Furthermore, the biocompatibility of these hydrogels can be evaluated in cell culture experiments.}, language = {en} } @article{GaritanoTrojaolaSanchoGoetzetal.2021, author = {Garitano-Trojaola, Andoni and Sancho, Ana and G{\"o}tz, Ralph and Eiring, Patrick and Walz, Susanne and Jetani, Hardikkumar and Gil-Pulido, Jesus and Da Via, Matteo Claudio and Teufel, Eva and Rhodes, Nadine and Haertle, Larissa and Arellano-Viera, Estibaliz and Tibes, Raoul and Rosenwald, Andreas and Rasche, Leo and Hudecek, Michael and Sauer, Markus and Groll, J{\"u}rgen and Einsele, Hermann and Kraus, Sabrina and Kort{\"u}m, Martin K.}, title = {Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02215-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260709}, year = {2021}, abstract = {The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML.}, language = {en} } @article{HaiderAhmadGrolletal.2021, author = {Haider, Malik Salman and Ahmad, Taufiq and Groll, J{\"u}rgen and Scherf-Clavel, Oliver and Kroiss, Matthias and Luxenhofer, Robert}, title = {The Challenging Pharmacokinetics of Mitotane: An Old Drug in Need of New Packaging}, series = {European Journal of Drug Metabolism and Pharmacokinetics}, volume = {46}, journal = {European Journal of Drug Metabolism and Pharmacokinetics}, number = {5}, issn = {2107-0180}, doi = {10.1007/s13318-021-00700-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270476}, pages = {575-593}, year = {2021}, abstract = {Adrenocortical carcinoma (ACC) is a malignant tumor originating from the adrenal gland cortex with a heterogeneous but overall dismal prognosis in advanced stages. For more than 50 years, mitotane has remained a cornerstone for the treatment of ACC as adjuvant and palliative therapy. It has a very poor aqueous solubility of 0.1 mg/l and high partition coefficient in octanol/water (log P) value of 6. The commercially available dosage form is 500 mg tablets (Lysodren®). Even at doses up to 6 g/day (12 tablets in divided doses) for several months, > 50\% patients do not achieve therapeutic plasma concentration > 14 mg/l due to poor water solubility, large volume of distribution and inter/intra-individual variability in bioavailability. This article aims to give a concise update of the clinical challenges associated with the administration of high-dose mitotane oral therapy which encompass the issues of poor bioavailability, difficult-to-predict pharmacokinetics and associated adverse events. Moreover, we present recent efforts to improve mitotane formulations. Their success has been limited, and we therefore propose an injectable mitotane formulation instead of oral administration, which could bypass many of the main issues associated with high-dose oral mitotane therapy. A parenteral administration of mitotane could not only help to alleviate the adverse effects but also circumvent the variable oral absorption, give better control over therapeutic plasma mitotane concentration and potentially shorten the time to achieve therapeutic drug plasma concentrations considerably. Mitotane as tablet form is currently the standard treatment for adrenocortical carcinoma. It has been used for 5 decades but suffers from highly variable responses in patients, subsequent adverse effects and overall lower response rate. This can be fundamentally linked to the exceedingly poor water solubility of mitotane itself. In terms of enhancing water solubility, a few research groups have attempted to develop better formulations of mitotane to overcome the issues associated with tablet dosage form. However, the success rate was limited, and these formulations did not make it into the clinics. In this article, we have comprehensively reviewed the properties of these formulations and discuss the reasons for their limited utility. Furthermore, we discuss a recently developed mitotane nanoformulation that led us to propose a novel approach to mitotane therapy, where intravenous delivery supplements the standard oral administration. With this article, we combine the current state of knowledge as a single piece of information about the various problems associated with the use of mitotane tablets, and herein we postulate the development of a new injectable mitotane formulation, which can potentially circumvent the major problems associated to mitotane's poor water solubility.}, language = {en} } @article{SchmidtAbinzanoMensingaetal.2020, author = {Schmidt, Stefanie and Abinzano, Florencia and Mensinga, Anneloes and Teßmar, J{\"o}rg and Groll, J{\"u}rgen and Malda, Jos and Levato, Riccardo and Blunk, Torsten}, title = {Differential production of cartilage ECM in 3D agarose constructs by equine articular cartilage progenitor cells and mesenchymal stromal cells}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms21197071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236180}, year = {2020}, abstract = {Identification of articular cartilage progenitor cells (ACPCs) has opened up new opportunities for cartilage repair. These cells may be used as alternatives for or in combination with mesenchymal stromal cells (MSCs) in cartilage engineering. However, their potential needs to be further investigated, since only a few studies have compared ACPCs and MSCs when cultured in hydrogels. Therefore, in this study, we compared chondrogenic differentiation of equine ACPCs and MSCs in agarose constructs as monocultures and as zonally layered co-cultures under both normoxic and hypoxic conditions. ACPCs and MSCs exhibited distinctly differential production of the cartilaginous extracellular matrix (ECM). For ACPC constructs, markedly higher glycosaminoglycan (GAG) contents were determined by histological and quantitative biochemical evaluation, both in normoxia and hypoxia. Differential GAG production was also reflected in layered co-culture constructs. For both cell types, similar staining for type II collagen was detected. However, distinctly weaker staining for undesired type I collagen was observed in the ACPC constructs. For ACPCs, only very low alkaline phosphatase (ALP) activity, a marker of terminal differentiation, was determined, in stark contrast to what was found for MSCs. This study underscores the potential of ACPCs as a promising cell source for cartilage engineering.}, language = {en} } @article{NadernezhadRymaGencetal.2021, author = {Nadernezhad, Ali and Ryma, Matthias and Gen{\c{c}}, Hatice and Cicha, Iwona and J{\"u}ngst, Thomasz and Groll, J{\"u}rgen}, title = {Melt electrowriting of isomalt for high-resolution templating of embedded microchannels}, series = {Advanced Material Technologies}, volume = {6}, journal = {Advanced Material Technologies}, number = {8}, doi = {10.1002/admt.202100221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256401}, year = {2021}, abstract = {Fabrication of microchannels using 3D printing of sugars as fugitive material is explored in different fields, including microfluidics. However, establishing reproducible methods for the controlled production of sugar structures with sub-100 μm dimensions remains a challenge. This study pioneers the processing of sugars by melt electrowriting (MEW) enabling the fabrication of structures with so far unprecedented resolution from Isomalt. Based on a systematic variation of process parameters, fibers with diameters down to 20 μm can be fabricated. The flexibility in the adjustment of fiber diameter by on-demand alteration of MEW parameters enables generating constructs with perfusable channels within polydimethylsiloxane molds. These channels have a diameter that can be adjusted from 30 to 200 μm in a single design. Taken together, the experiments show that MEW strongly benefits from the thermal and physical stability of Isomalt, providing a robust platform for the fabrication of small-diameter embedded microchannel systems.}, language = {en} } @article{JungstPenningsSchmitzetal.2019, author = {Jungst, Tomasz and Pennings, Iris and Schmitz, Michael and Rosenberg, Antoine J. W. P. and Groll, J{\"u}rgen and Gawlitta, Debby}, title = {Heterotypic Scaffold Design Orchestrates Primary Cell Organization and Phenotypes in Cocultured Small Diameter Vascular Grafts}, series = {Advanced Functional Materials}, volume = {29}, journal = {Advanced Functional Materials}, doi = {10.1002/adfm.201905987}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217039}, year = {2019}, abstract = {To facilitate true regeneration, a vascular graft should direct the evolution of a neovessel to obtain the function of a native vessel. For this, scaffolds have to permit the formation of an intraluminal endothelial cell monolayer, mimicking the tunica intima. In addition, when attempting to mimic a tunica media-like outer layer, the stacking and orientation of vascular smooth muscle cells (vSMCs) should be recapitulated. An integral scaffold design that facilitates this has so far remained a challenge. A hybrid fabrication approach is introduced by combining solution electrospinning and melt electrowriting. This allows a tissue-structure mimetic, hierarchically bilayered tubular scaffold, comprising an inner layer of randomly oriented dense fiber mesh and an outer layer of microfibers with controlled orientation. The scaffold supports the organization of a continuous luminal endothelial monolayer and oriented layers of vSM-like cells in the media, thus facilitating control over specific and tissue-mimetic cellular differentiation and support of the phenotypic morphology in the respective layers. Neither soluble factors nor a surface bioactivation of the scaffold is needed with this approach, demonstrating that heterotypic scaffold design can direct physiological tissue-like cell organization and differentiation.}, language = {en} } @article{MechauFrankBakircietal.2021, author = {Mechau, Jannik and Frank, Andreas and Bakirci, Ezgi and Gumbel, Simon and Jungst, Tomasz and Giesa, Reiner and Groll, J{\"u}rgen and Dalton, Paul D. and Schmidt, Hans-Werner}, title = {Hydrophilic (AB)\(_{n}\) Segmented Copolymers for Melt Extrusion-Based Additive Manufacturing}, series = {Macromolecular Chemistry and Physics}, volume = {222}, journal = {Macromolecular Chemistry and Physics}, number = {1}, doi = {10.1002/macp.202000265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224513}, year = {2021}, abstract = {Several manufacturing technologies beneficially involve processing from the melt, including extrusion-based printing, electrospinning, and electrohydrodynamic jetting. In this study, (AB)\(_{n}\) segmented copolymers are tailored for melt-processing to form physically crosslinked hydrogels after swelling. The copolymers are composed of hydrophilic poly(ethylene glycol)-based segments and hydrophobic bisurea segments, which form physical crosslinks via hydrogen bonds. The degree of polymerization was adjusted to match the melt viscosity to the different melt-processing techniques. Using extrusion-based printing, a width of approximately 260 µm is printed into 3D constructs, with excellent interlayer bonding at fiber junctions, due to hydrogen bonding between the layers. For melt electrospinning, much thinner fibers in the range of about 1-15 µm are obtained and produced in a typical nonwoven morphology. With melt electrowriting, fibers are deposited in a controlled way to well-defined 3D constructs. In this case, multiple fiber layers fuse together enabling constructs with line width in the range of 70 to 160 µm. If exposed to water the printed constructs swell and form physically crosslinked hydrogels that slowly disintegrate, which is a feature for soluble inks within biofabrication strategies. In this context, cytotoxicity tests confirm the viability of cells and thus demonstrating biocompatibility of this class of copolymers.}, language = {en} } @article{SanchoVandersmissenCrapsetal.2017, author = {Sancho, Ana and Vandersmissen, Ine and Craps, Sander and Luttun, Aernout and Groll, J{\"u}rgen}, title = {A new strategy to measure intercellular adhesion forces in mature cell-cell contacts}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {46152}, doi = {10.1038/srep46152}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170999}, year = {2017}, abstract = {Intercellular adhesion plays a major role in tissue development and homeostasis. Yet, technologies to measure mature cell-cell contacts are not available. We introduce a methodology based on fluidic probe force microscopy to assess cell-cell adhesion forces after formation of mature intercellular contacts in cell monolayers. With this method we quantify that L929 fibroblasts exhibit negligible cell-cell adhesion in monolayers whereas human endothelial cells from the umbilical artery (HUAECs) exert strong intercellular adhesion forces per cell. We use a new in vitro model based on the overexpression of Muscle Segment Homeobox 1 (MSX1) to induce Endothelial-to-Mesenchymal Transition (EndMT), a process involved in cardiovascular development and disease. We reveal how intercellular adhesion forces in monolayer decrease significantly at an early stage of EndMT and we show that cells undergo stiffening and flattening at this stage. This new biomechanical insight complements and expands the established standard biomolecular analyses. Our study thus introduces a novel tool for the assessment of mature intercellular adhesion forces in a physiological setting that will be of relevance to biological processes in developmental biology, tissue regeneration and diseases like cancer and fibrosis.}, language = {en} } @article{PinznerKellerMutetal.2021, author = {Pinzner, Florian and Keller, Thorsten and Mut, J{\"u}rgen and Bechold, Julian and Seibel, J{\"u}rgen and Groll, J{\"u}rgen}, title = {Polyoxazolines with a vicinally double-bioactivated terminus for biomacromolecular affinity assessment}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {9}, issn = {1424-8220}, doi = {10.3390/s21093153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239530}, year = {2021}, abstract = {Interactions between proteins and carbohydrates with larger biomacromolecules, e.g., lectins, are usually examined using self-assembled monolayers on target gold surfaces as a simplified model measuring setup. However, most of those measuring setups are either limited to a single substrate or do not allow for control over ligand distance and spacing. Here, we develop a synthetic strategy, consisting of a cascade of a thioesterification, native chemical ligation (NCL) and thiol-ene reaction, in order to create three-component polymer conjugates with a defined double bioactivation at the chain end. The target architecture is the vicinal attachment of two biomolecule residues to the α telechelic end point of a polymer and a thioether group at the ω chain end for fixating the conjugate to a gold sensor chip surface. As proof-of-principle studies for affinity measurements, we demonstrate the interaction between covalently bound mannose and ConA in surface acoustic wave (SAW) and surface plasmon resonance (SPR) experiments.}, language = {en} } @article{DoryabTaskinStahlhutetal.2021, author = {Doryab, Ali and Taskin, Mehmet Berat and Stahlhut, Philipp and Schr{\"o}ppel, Andreas and Wagner, Darcy E. and Groll, J{\"u}rgen and Schmid, Otmar}, title = {A Biomimetic, Copolymeric Membrane for Cell-Stretch Experiments with Pulmonary Epithelial Cells at the Air-Liquid Interface}, series = {Advanced Functional Materials}, volume = {31}, journal = {Advanced Functional Materials}, number = {10}, doi = {10.1002/adfm.202004707}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225645}, year = {2021}, abstract = {Chronic respiratory diseases are among the leading causes of death worldwide, but only symptomatic therapies are available for terminal illness. This in part reflects a lack of biomimetic in vitro models that can imitate the complex environment and physiology of the lung. Here, a copolymeric membrane consisting of poly(ε-)caprolactone and gelatin with tunable properties, resembling the main characteristics of the alveolar basement membrane is introduced. The thin bioinspired membrane (≤5 μm) is stretchable (up to 25\% linear strain) with appropriate surface wettability and porosity for culturing lung epithelial cells under air-liquid interface conditions. The unique biphasic concept of this membrane provides optimum characteristics for initial cell growth (phase I) and then switch to biomimetic properties for cyclic cell-stretch experiments (phase II). It is showed that physiologic cyclic mechanical stretch improves formation of F-actin cytoskeleton filaments and tight junctions while non-physiologic over-stretch induces cell apoptosis, activates inflammatory response (IL-8), and impairs epithelial barrier integrity. It is also demonstrated that cyclic physiologic stretch can enhance the cellular uptake of nanoparticles. Since this membrane offers considerable advantages over currently used membranes, it may lead the way to more biomimetic in vitro models of the lung for translation of in vitro response studies into clinical outcome.}, language = {en} } @article{RymaTylekLiebscheretal.2021, author = {Ryma, Matthias and Tylek, Tina and Liebscher, Julia and Blum, Carina and Fernandez, Robin and B{\"o}hm, Christoph and Kastenm{\"u}ller, Wolfgang and Gasteiger, Georg and Groll, J{\"u}rgen}, title = {Translation of collagen ultrastructure to biomaterial fabrication for material-independent but highly efficient topographic immunomodulation}, series = {Advanced materials}, volume = {33}, journal = {Advanced materials}, number = {33}, doi = {10.1002/adma.202101228}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256381}, year = {2021}, abstract = {Supplement-free induction of cellular differentiation and polarization solely through the topography of materials is an auspicious strategy but has so far significantly lagged behind the efficiency and intensity of media-supplementation-based protocols. Consistent with the idea that 3D structural motifs in the extracellular matrix possess immunomodulatory capacity as part of the natural healing process, it is found in this study that human-monocyte-derived macrophages show a strong M2a-like prohealing polarization when cultured on type I rat-tail collagen fibers but not on collagen I films. Therefore, it is hypothesized that highly aligned nanofibrils also of synthetic polymers, if packed into larger bundles in 3D topographical biomimetic similarity to native collagen I, would induce a localized macrophage polarization. For the automated fabrication of such bundles in a 3D printing manner, the strategy of "melt electrofibrillation" is pioneered by the integration of flow-directed polymer phase separation into melt electrowriting and subsequent selective dissolution of the matrix polymer postprocessing. This process yields nanofiber bundles with a remarkable structural similarity to native collagen I fibers, particularly for medical-grade poly(ε-caprolactone). These biomimetic fibrillar structures indeed induce a pronounced elongation of human-monocyte-derived macrophages and unprecedentedly trigger their M2-like polarization similar in efficacy as interleukin-4 treatment.}, language = {en} } @article{CastilhoHochleitnerWilsonetal.2018, author = {Castilho, Miguel and Hochleitner, Gernot and Wilson, Wouter and van Rietbergen, Bert and Dalton, Paul D. and Groll, J{\"u}rgen and Malda, Jos and Ito, Keita}, title = {Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-19502-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222280}, year = {2018}, abstract = {Reinforcing hydrogels with micro-fibre scaffolds obtained by a Melt-Electrospinning Writing (MEW) process has demonstrated great promise for developing tissue engineered (TE) constructs with mechanical properties compatible to native tissues. However, the mechanical performance and reinforcement mechanism of the micro-fibre reinforced hydrogels is not yet fully understood. In this study, FE models, implementing material properties measured experimentally, were used to explore the reinforcement mechanism of fibre-hydrogel composites. First, a continuum FE model based on idealized scaffold geometry was used to capture reinforcement effects related to the suppression of lateral gel expansion by the scaffold, while a second micro-FE model based on micro-CT images of the real construct geometry during compaction captured the effects of load transfer through the scaffold interconnections. Results demonstrate that the reinforcement mechanism at higher scaffold volume fractions was dominated by the load carrying-ability of the fibre scaffold interconnections, which was much higher than expected based on testing scaffolds alone because the hydrogel provides resistance against buckling of the scaffold. We propose that the theoretical understanding presented in this work will assist the design of more effective composite constructs with potential applications in a wide range of TE conditions.}, language = {en} } @article{TylekSchillingSchlegelmilchetal.2019, author = {Tylek, Tina and Schilling, Tatjana and Schlegelmilch, Katrin and Ries, Maximilian and Rudert, Maximilian and Jakob, Franz and Groll, J{\"u}rgen}, title = {Platelet lysate outperforms FCS and human serum for co-culture of primary human macrophages and hMSCs}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-40190-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229174}, year = {2019}, abstract = {In vitro co-cultures of different primary human cell types are pivotal for the testing and evaluation of biomaterials under conditions that are closer to the human in vivo situation. Especially co-cultures of macrophages and mesenchymal stem cells (MSCs) are of interest, as they are both present and involved in tissue regeneration and inflammatory reactions and play crucial roles in the immediate inflammatory reactions and the onset of regenerative processes, thus reflecting the decisive early phase of biomaterial contact with the host. A co-culture system of these cell types might thus allow for the assessment of the biocompatibility of biomaterials. The establishment of such a co-culture is challenging due to the different in vitro cell culture conditions. For human macrophages, medium is usually supplemented with human serum (hS), whereas hMSC culture is mostly performed using fetal calf serum (FCS), and these conditions are disadvantageous for the respective other cell type. We demonstrate that human platelet lysate (hPL) can replace hS in macrophage cultivation and appears to be the best option for co-cultivation of human macrophages with hMSCs. In contrast to FCS and hS, hPL maintained the phenotype of both cell types, comparable to that of their respective standard culture serum, as well as the percentage of each cell population. Moreover, the expression profile and phagocytosis activity of macrophages was similar to hS.}, language = {en} }