@article{ToussaintRichterManteletal.2016, author = {Toussaint, Andr{\´e} and Richter, Anne and Mantel, Frederick and Flickinger, John C. and Grills, Inga Siiner and Tyagi, Neelam and Sahgal, Arjun and Letourneau, Daniel and Sheehan, Jason P. and Schlesinger, David J. and Gerszten, Peter Carlos and Guckenberger, Matthias}, title = {Variability in spine radiosurgery treatment planning - results of an international multi-institutional study}, series = {Radiation Oncology}, volume = {11}, journal = {Radiation Oncology}, number = {57}, doi = {10.1186/s13014-016-0631-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146687}, year = {2016}, abstract = {Background The aim of this study was to quantify the variability in spinal radiosurgery (SRS) planning practices between five international institutions, all member of the Elekta Spine Radiosurgery Research Consortium. Methods Four institutions provided one representative patient case each consisting of the medical history, CT and MR imaging. A step-wise planning approach was used where, after each planning step a consensus was generated that formed the basis for the next planning step. This allowed independent analysis of all planning steps of CT-MR image registration, GTV definition, CTV definition, PTV definition and SRS treatment planning. In addition, each institution generated one additional SRS plan for each case based on intra-institutional image registration and contouring, independent of consensus results. Results Averaged over the four cases, image registration variability ranged between translational 1.1 mm and 2.4 mm and rotational 1.1° and 2.0° in all three directions. GTV delineation variability was 1.5 mm in axial and 1.6 mm in longitudinal direction averaged for the four cases. CTV delineation variability was 0.8 mm in axial and 1.2 mm in longitudinal direction. CTV-to-PTV margins ranged between 0 mm and 2 mm according to institutional protocol. Delineation variability was 1 mm in axial directions for the spinal cord. Average PTV coverage for a single fraction18 Gy prescription was 87 ± 5 \%; Dmin to the PTV was 7.5 ± 1.8 Gy averaged over all cases and institutions. Average Dmax to the PRV_SC (spinal cord + 1 mm) was 10.5 ± 1.6 Gy and the average Paddick conformity index was 0.69 ± 0.06. Conclusions Results of this study reflect the variability in current practice of spine radiosurgery in large and highly experienced academic centers. Despite close methodical agreement in the daily workflow, clinically significant variability in all steps of the treatment planning process was demonstrated. This may translate into differences in patient clinical outcome and highlights the need for consensus and established delineation and planning criteria.}, language = {en} } @article{GuckenbergerSweeneyFlickingeretal.2011, author = {Guckenberger, Matthias and Sweeney, Reinhart A. and Flickinger, John C. and Gerszten, Peter C. and Kersh, Ronald and Sheehan, Jason and Sahgal, Arjun}, title = {Clinical practice of image-guided spine radiosurgery - results from an international research consortium}, series = {Radiation Oncology}, volume = {6}, journal = {Radiation Oncology}, number = {172}, doi = {10.1186/1748-717X-6-172}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138006}, year = {2011}, abstract = {Background Spinal radiosurgery is a quickly evolving technique in the radiotherapy and neurosurgical communities. However, the methods of spine radiosurgery have not been standardized. This article describes the results of a survey about the methods of spine radiosurgery at five international institutions. Methods All institutions are members of the Elekta Spine Radiosurgery Research Consortium and have a dedicated research and clinical focus on image-guided radiosurgery. The questionnaire consisted of 75 items covering all major steps of spine radiosurgery. Results Strong agreement in the methods of spine radiosurgery was observed. In particular, similarities were observed with safety and quality assurance playing an important role in the methods of all institutions, cooperation between neurosurgeons and radiation oncologists in case selection, dedicated imaging for target- and organ-at-risk delineation, application of proper safety margins for the target volume and organs-at-risk, conformal planning and precise image-guided treatment delivery, and close clinical and radiological follow-up. In contrast, three major areas of uncertainty and disagreement were identified: 1) Indications and contra-indications for spine radiosurgery; 2) treatment dose and fractionation and 3) tolerance dose of the spinal cord. Conclusions Results of this study reflect the current practice of spine radiosurgery in large academic centers. Despite close agreement was observed in many steps of spine radiosurgery, further research in form of retrospective and especially prospective studies is required to refine the details of spinal radiosurgery in terms of safety and efficacy.}, language = {en} }