@article{HardcastleTomeCannonetal.2012, author = {Hardcastle, Nicholas and Tom{\´e}, Wolfgang A. and Cannon, Donald M. and Brouwer, Charlotte L. and Wittendorp, Paul W. H. and Dogan, Nesrin and Guckenberger, Matthias and Allaire, St{\´e}phane and Mallya, Yogish and Kumar, Prashant and Oechsner, Markus and Richter, Anne and Song, Shiyu and Myers, Michael and Polat, B{\"u}lent and Bzdusek, Karl}, title = {A multi-institution evaluation of deformable image registration algorithms for automatic organ delineation in adaptive head and neck radiotherapy}, series = {Radiation Oncology}, volume = {7}, journal = {Radiation Oncology}, number = {90}, doi = {10.1186/1748-717X-7-90}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134756}, year = {2012}, abstract = {Background: Adaptive Radiotherapy aims to identify anatomical deviations during a radiotherapy course and modify the treatment plan to maintain treatment objectives. This requires regions of interest (ROIs) to be defined using the most recent imaging data. This study investigates the clinical utility of using deformable image registration (DIR) to automatically propagate ROIs. Methods: Target (GTV) and organ-at-risk (OAR) ROIs were non-rigidly propagated from a planning CT scan to a per-treatment CT scan for 22 patients. Propagated ROIs were quantitatively compared with expert physician-drawn ROIs on the per-treatment scan using Dice scores and mean slicewise Hausdorff distances, and center of mass distances for GTVs. The propagated ROIs were qualitatively examined by experts and scored based on their clinical utility. Results: Good agreement between the DIR-propagated ROIs and expert-drawn ROIs was observed based on the metrics used. 94\% of all ROIs generated using DIR were scored as being clinically useful, requiring minimal or no edits. However, 27\% (12/44) of the GTVs required major edits. Conclusion: DIR was successfully used on 22 patients to propagate target and OAR structures for ART with good anatomical agreement for OARs. It is recommended that propagated target structures be thoroughly reviewed by the treating physician.}, language = {en} } @article{MantelFlentjeGuckenberger2013, author = {Mantel, Frederick and Flentje, Michael and Guckenberger, Matthias}, title = {Stereotactic body radiation therapy in the re-irradiation situation - a review}, series = {Radiation Oncology}, journal = {Radiation Oncology}, doi = {10.1186/1748-717X-8-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96346}, year = {2013}, abstract = {Although locoregional relapse is frequent after definitive radiotherapy (RT) or multimodal treatments, re-irradiation is only performed in few patients even in palliative settings like e.g. vertebral metastasis. This is most due to concern about potentially severe complications, especially when large volumes are exposed to re-irradiation. With technological advancements in treatment planning the interest in re-irradiation as a local treatment approach has been reinforced. Recently, several studies reported re-irradiation for spinal metastases using SBRT with promising local and symptom control rates and simultaneously low rates of toxicity. These early data consistently indicate that SBRT is a safe and effective treatment modality in this clinical situation, where other treatment alternatives are rare. Similarly, good results have been shown for SBRT in the re-irradiation of head and neck tumors. Despite severe late adverse effects were reported in several studies, especially after single fraction doses >10 Gy, they appear less frequently compared to conventional radiotherapy. Few studies with small patient numbers have been published on SBRT re-irradiation for non-small cell lung cancer (NSCLC). Overall survival (OS) is limited by systemic progression and seems to depend particularly on patient selection. SBRT re-irradiation after primary SBRT should not be practiced in centrally located tumors due to high risk of severe toxicity. Only limited data is available for SBRT re-irradiation of pelvic tumors: feasibility and acceptable toxicity has been described, suggesting SBRT as a complementary treatment modality for local symptom control.}, language = {en} } @article{GuckenbergerMantelGersztenetal.2014, author = {Guckenberger, Matthias and Mantel, Frederick and Gerszten, Peter C. and Flickinger, John C. and Sahgal, Arjun and L{\´e}tourneau, Daniel and Grills, Inga S. and Jawad, Maha and Fahim, Daniel K. and Shin, John H. and Winey, Brian and Sheehan, Jason and Kersh, Ron}, title = {Safety and efficacy of stereotactic body radiotherapy as primary treatment for vertebral metastases: a multi-institutional analysis}, doi = {10.1186/s13014-014-0226-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110638}, year = {2014}, abstract = {Purpose To evaluate patient selection criteria, methodology, safety and clinical outcomes of stereotactic body radiotherapy (SBRT) for treatment of vertebral metastases. Materials and methods Eight centers from the United States (n = 5), Canada (n = 2) and Germany (n = 1) participated in the retrospective study and analyzed 301 patients with 387 vertebral metastases. No patient had been exposed to prior radiation at the treatment site. All patients were treated with linac-based SBRT using cone-beam CT image-guidance and online correction of set-up errors in six degrees of freedom. Results 387 spinal metastases were treated and the median follow-up was 11.8 months. The median number of consecutive vertebrae treated in a single volume was one (range, 1-6), and the median total dose was 24 Gy (range 8-60 Gy) in 3 fractions (range 1-20). The median EQD210 was 38 Gy (range 12-81 Gy). Median overall survival (OS) was 19.5 months and local tumor control (LC) at two years was 83.9\%. On multivariate analysis for OS, male sex (p < 0.001; HR = 0.44), performance status <90 (p < 0.001; HR = 0.46), presence of visceral metastases (p = 0.007; HR = 0.50), uncontrolled systemic disease (p = 0.007; HR = 0.45), >1 vertebra treated with SBRT (p = 0.04; HR = 0.62) were correlated with worse outcomes. For LC, an interval between primary diagnosis of cancer and SBRT of ≤30 months (p = 0.01; HR = 0.27) and histology of primary disease (NSCLC, renal cell cancer, melanoma, other) (p = 0.01; HR = 0.21) were correlated with worse LC. Vertebral compression fractures progressed and developed de novo in 4.1\% and 3.6\%, respectively. Other adverse events were rare and no radiation induced myelopathy reported. Conclusions This multi-institutional cohort study reports high rates of efficacy with spine SBRT. At this time the optimal fractionation within high dose practice is unknown.}, language = {en} } @article{GuckenbergerAlexandrowFlentje2012, author = {Guckenberger, Matthias and Alexandrow, Nikolaus and Flentje, Michael}, title = {Radiotherapy alone for stage I-III low grade follicular lymphoma: long-term outcome and comparison of extended field and total nodal irradiation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75702}, year = {2012}, abstract = {Background: To analyze long-term results of radiotherapy alone for stage I-III low grade follicular lymphoma and to compare outcome after extended field irradiation (EFI) and total nodal irradiation (TNI). Methods and materials: Between 1982 and 2007, 107 patients were treated with radiotherapy alone for low grade follicular lymphoma at Ann Arbor stage I (n = 50), II (n = 36) and III (n = 21); 48 and 59 patients were treated with EFI and TNI, respectively. The median total dose in the first treatment series of the diaphragmatic side with larger lymphoma burden was 38 Gy (25 Gy - 50 Gy) and after an interval of median 30 days, a total dose of 28 Gy (12.6 Gy - 45 Gy) was given in the second treatment series completing TNI. Results: After a median follow-up of 14 years for living patients, 10-years and 15-years overall survival (OS) were 64\% and 50\%, respectively. Survival was not significantly different between stages I, II and III. TNI and EFI resulted in 15-years OS of 65\% and 34\% but patients treated with TNI were younger, had better performance status and higher stage of disease compared to patients treated with EFI. In multivariate analysis, only age at diagnosis (p<0.001, relative risk [RR] 1.06) and Karnofsky performance status (p = 0.04, RR = 0.96) were significantly correlated with OS. Freedom from progression (FFP) was 58\% and 56\% after 10-years and 15-years, respectively. Recurrences outside the irradiated volume were significantly reduced after TNI compared to EFI; however, increased rates of in-field recurrences and extra-nodal out-of-field recurrence counterbalanced this effect resulting in no significant difference in FFP between TNI and EFI. In univariate analysis, FFP was significantly improved in stage I compared to stage II but no differences were observed between stages I/II and stage III. In multivariate analysis no patient or treatment parameter was correlated with FFP. Acute toxicity was significantly increased after TNI compared to EFI with a trend to increased late toxicity as well. Conclusions: Radiotherapy alone for stage I and II follicular lymphoma resulted in long-term OS with high rates of disease control; no benefit of TNI over EFI was observed. For stage III follicular lymphoma, TNI achieved promising OS and FFP and should be considered as a potentially curative treatment option.}, subject = {Medizin}, language = {en} } @article{GuckenbergerRoeschBaieretal.2012, author = {Guckenberger, Matthias and Roesch, Johannes and Baier, Kurt and Sweeney, Reinhart A. and Flentje, Michael}, title = {Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75669}, year = {2012}, abstract = {Background: To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Methods and materials: Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and posttreatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Results: Errors prior to IG were 3.9 mm± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75\% ± 19\% and 60\% ± 25\% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6\% and 10\% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5\% in 14\% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. Conclusions: IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate safety margins.}, subject = {Medizin}, language = {en} } @phdthesis{Guckenberger2003, author = {Guckenberger, Matthias}, title = {Analyse des Hitzeschocks bei Neisseria meningitidis mit DNA-Microarrays}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8952}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Das Gram negative Bakterium Neisseria meningitidis ist weltweit ein bedeutender Erreger der bakteriellen Meningitis. Obwohl das ausschließlich humanpathogene Bakterium in bis zu 25\% der Europ{\"a}ischen Bev{\"o}lkerung die oberen Atemwege als harmloser Kommensale besiedelt, kommt es unter bestimmten, noch nicht ganz verstandenen Bedingungen zu einer klinisch manifesten Infektion. In dieser Arbeit wurde die neue Technologie der DNA Mikroarray Technologie f{\"u}r die Untersuchung des Transkriptoms bei Neisseria meningitidis etabliert. Untersucht wurde die Reaktion von N. meningitidis auf einen Hitzeschock, eine pl{\"o}tzliche Steigerung der Temperatur. W{\"a}hrend einer Infektion wird das Bakterium durch induziertes Fieber sehr {\"a}hnlichen Bedingungen ausgesetzt. Im Ergebnis erlaubten die RNA Expressionsanalysen nicht nur eine sichere Unterscheidung deregulierter Gene von Genen mit konstanter Expression, sondern es konnte auch das Ausmaß der Deregulation exakt bestimmt werden. Die Daten der DNA Mikroarray Experimente wurden mit der etablierten Technik der RT-PCR exakt best{\"a}tigt. Bei den Hitzeschock-Versuchen mit Neisseria meningitidis konnten zahlreiche ORFs als Hitzeschock-Gene identifiziert werden. Die Funktion dieser Gene, darunter groEL/groES und dnaJ/dnaK, war bereits bei anderen Organismen beschrieben worden, was die Qualit{\"a}t und Reproduzierbarkeit der Ergebnisse unterstreicht. Es konnte gezeigt werden, dass die Intensit{\"a}t des Hitzeschocks und damit die Deregulation der Hitzeschock-Gene mit steigender Temperatur zunimmt. Eine Erkl{\"a}rung f{\"u}r dieses interessante Ergebnis w{\"a}re, dass mit Steigerung der Temperatur der Schaden im Bakterium zunimmt und dadurch auch mehr Hitzeschock Proteine zur Reparatur ben{\"o}tigt werden. Daneben wurde erstmals die transkriptionelle Beeinflussung von Genen aus dem Bereich der Transformation durch einen Hitzeschock gefunden. Diese Daten konnten durch einen ph{\"a}notypischen Nachweis der Verminderung der Transformationsaktivit{\"a}t von Meningokokken nach einem Hitzeschock best{\"a}tigt werden. Diese neue Technik wird eine der Schl{\"u}sseltechnologien f{\"u}r die Forschung in der postgenomischen {\"A}ra sein. Viele Fragen in dem noch l{\"u}ckenhaften Wissen {\"u}ber die Pathologie von Neisseria meningitidis sollen sich in Zukunft mit Hilfe der DNA Mikroarrays beantworten lassen.}, language = {de} } @article{GuckenbergerHawkinsFlentjeetal.2012, author = {Guckenberger, Matthias and Hawkins, Maria and Flentje, Michael and Sweeney, Reinhart A.}, title = {Fractionated radiosurgery for painful spinal metastases: DOSIS - a phase II trial}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75853}, year = {2012}, abstract = {Background One third of all cancer patients will develop bone metastases and the vertebral column is involved in approximately 70 \% of these patients. Conventional radiotherapy with of 1-10 fractions and total doses of 8-30 Gy is the current standard for painful vertebral metastases; however, the median pain response is short with 3-6 months and local tumor control is limited with these rather low irradiation doses. Recent advances in radiotherapy technology - intensity modulated radiotherapy for generation of highly conformal dose distributions and image-guidance for precise treatment delivery - have made dose-escalated radiosurgery of spinal metastases possible and early results of pain and local tumor control are promising. The current study will investigate efficacy and safety of radiosurgery for painful vertebral metastases and three characteristics will distinguish this study. 1) A prognostic score for overall survival will be used for selection of patients with longer life expectancy to allow for analysis of long-term efficacy and safety. 2) Fractionated radiosurgery will be performed with the number of treatment fractions adjusted to either good (10 fractions) or intermediate (5 fractions) life expectancy. Fractionation will allow inclusion of tumors immediately abutting the spinal cord due to higher biological effective doses at the tumor - spinal cord interface compared to single fraction treatment. 3) Dose intensification will be performed in the involved parts of the vertebrae only, while uninvolved parts are treated with conventional doses using the simultaneous integrated boost concept. Methods / Design It is the study hypothesis that hypo-fractionated image-guided radiosurgery significantly improves pain relief compared to historic data of conventionally fractionated radiotherapy. Primary endpoint is pain response 3 months after radiosurgery, which is defined as pain reduction of ≥2 points at the treated vertebral site on the 0 to 10 Visual Analogue Scale. 60 patients will be included into this two-centre phase II trial. Conclusions Results of this study will refine the methods of patient selection, target volume definition, treatment planning and delivery as well as quality assurance for radiosurgery. It is the intention of this study to form the basis for a future randomized controlled trial comparing conventional radiotherapy with fractionated radiosurgery for palliation of painful vertebral metastases. Trial registration ClinicalTrials.gov Identifier: NCT01594892}, subject = {Medizin}, language = {en} } @article{ColvillBoothNilletal.2016, author = {Colvill, Emma and Booth, Jeremy and Nill, Simeon and Fast, Martin and Bedford, James and Oelfke, Uwe and Nakamura, Mitsuhiro and Poulsen, Per and Worm, Esben and Hansen, Rune and Ravkilde, Thomas and Rydh{\"o}g, Jonas Scherman and Pommer, Tobias and af Rosenschold, Per Munck and Lang, Stephanie and Guckenberger, Matthias and Groh, Christian and Herrmann, Christian and Verellen, Dirk and Poels, Kenneth and Wang, Lei and Hadsell, Michael and Sothmann, Thilo and Blanck, Oliver and Keall, Paul}, title = {A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking}, series = {Radiotherapy and Oncology}, volume = {119}, journal = {Radiotherapy and Oncology}, number = {1}, doi = {10.1016/j.radonc.2016.03.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189605}, pages = {159-165}, year = {2016}, abstract = {Purpose: A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. Methods and materials: Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for gamma-tests recorded. Results: For all lung traces all measurement sets show improved dose accuracy with a mean 2\%/2 mm gamma-fail rate of 1.6\% with adaptation and 15.2\% without adaptation (p < 0.001). For all prostate the mean 2\%/2 mm gamma-fail rate was 1.4\% with adaptation and 17.3\% without adaptation (p < 0.001). The difference between the four systems was small with an average 2\%/2 mm gamma-fail rate of <3\% for all systems with adaptation for lung and prostate. Conclusions: The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods.}, language = {en} } @article{TamihardjaSchortmannLawrenzetal.2021, author = {Tamihardja, J{\"o}rg and Schortmann, Max and Lawrenz, Ingulf and Weick, Stefan and Bratengeier, Klaus and Flentje, Michael and Guckenberger, Matthias and Polat, B{\"u}lent}, title = {Moderately hypofractionated radiotherapy for localized prostate cancer: updated long-term outcome and toxicity analysis}, series = {Strahlentherapie und Onkologie}, volume = {197}, journal = {Strahlentherapie und Onkologie}, issn = {0179-7158}, doi = {10.1007/s00066-020-01678-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232509}, pages = {124-132}, year = {2021}, abstract = {Purpose Evaluation of long-term outcome and toxicity of moderately hypofractionated radiotherapy using intensity-modulated radiotherapy (IMRT) with simultaneous integrated boost treatment planning and cone beam CT-based image guidance for localized prostate cancer. Methods Between 2005 and 2015, 346 consecutive patients with localized prostate cancer received primary radiotherapy using cone beam CT-based image-guided intensity-modulated radiotherapy (IG-IMRT) and volumetric modulated arc therapy (IG-VMAT) with a simultaneous integrated boost (SIB). Total doses of 73.9 Gy (n = 44) and 76.2 Gy (n = 302) to the high-dose PTV were delivered in 32 and 33 fractions, respectively. The low-dose PTV received a dose (D95) of 60.06 Gy in single doses of 1.82 Gy. The pelvic lymph nodes were treated in 91 high-risk patients to 45.5 Gy (D95). Results Median follow-up was 61.8 months. The 5‑year biochemical relapse-free survival (bRFS) was 85.4\% for all patients and 93.3, 87.4, and 79.4\% for low-, intermediate-, and high-risk disease, respectively. The 5‑year prostate cancer-specific survival (PSS) was 94.8\% for all patients and 98.7, 98.9, 89.3\% for low-, intermediate-, and high-risk disease, respectively. The 5‑year and 10-year overall survival rates were 83.8 and 66.3\% and the 5‑year and 10-year freedom from distant metastasis rates were 92.2 and 88.0\%, respectively. Cumulative 5‑year late GU toxicity and late GI toxicity grade ≥2 was observed in 26.3 and 12.1\% of the patients, respectively. Cumulative 5‑year late grade 3 GU/GI toxicity occurred in 4.0/1.2\%. Conclusion Moderately hypofractionated radiotherapy using SIB treatment planning and cone beam CT image guidance resulted in high biochemical control and survival with low rates of late toxicity.}, language = {en} } @article{TamihardjaLawrenzLutyjetal.2022, author = {Tamihardja, J{\"o}rg and Lawrenz, Ingulf and Lutyj, Paul and Weick, Stefan and Guckenberger, Matthias and Polat, B{\"u}lent and Flentje, Michael}, title = {Propensity score-matched analysis comparing dose-escalated intensity-modulated radiation therapy versus external beam radiation therapy plus high-dose-rate brachytherapy for localized prostate cancer}, series = {Strahlentherapie und Onkologie}, volume = {198}, journal = {Strahlentherapie und Onkologie}, number = {8}, doi = {10.1007/s00066-022-01953-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325055}, pages = {735-743}, year = {2022}, abstract = {Purpose Dose-escalated external beam radiation therapy (EBRT) and EBRT + high-dose-rate brachytherapy (HDR-BT) boost are guideline-recommended treatment options for localized prostate cancer. The purpose of this study was to compare long-term outcome and toxicity of dose-escalated EBRT versus EBRT + HDR-BT boost. Methods From 2002 to 2019, 744 consecutive patients received either EBRT or EBRT + HDR-BT boost, of whom 516 patients were propensity score matched. Median follow-up was 95.3 months. Cone beam CT image-guided EBRT consisted of 33 fractions of intensity-modulated radiation therapy with simultaneous integrated boost up to 76.23 Gy (D\(_{Mean}\)). Combined treatment was delivered as 46 Gy (D\(_{Mean}\)) EBRT, followed by two fractions HDR-BT boost with 9 Gy (D\(_{90\\%}\)). Propensity score matching was applied before analysis of the primary endpoint, estimated 10-year biochemical relapse-free survival (bRFS), and the secondary endpoints metastasis-free survival (MFS) and overall survival (OS). Prognostic parameters were analyzed by Cox proportional hazard modelling. Genitourinary (GU)/gastrointestinal (GI) toxicity evaluation used the Common Toxicity Criteria for Adverse Events (v5.0). Results The estimated 10-year bRFS was 82.0\% vs. 76.4\% (p = 0.075) for EBRT alone versus combined treatment, respectively. The estimated 10-year MFS was 82.9\% vs. 87.0\% (p = 0.195) and the 10-year OS was 65.7\% vs. 68.9\% (p = 0.303), respectively. Cumulative 5‑year late GU ≥ grade 2 toxicities were seen in 23.6\% vs. 19.2\% (p = 0.086) and 5‑year late GI ≥ grade 2 toxicities in 11.1\% vs. 5.0\% of the patients (p = 0.002); cumulative 5‑year late grade 3 GU toxicity occurred in 4.2\% vs. 3.6\% (p = 0.401) and GI toxicity in 1.0\% vs. 0.3\% (p = 0.249), respectively. Conclusion Both treatment groups showed excellent long-term outcomes with low rates of severe toxicity.}, language = {en} }