@article{TecleHackenbergScheichetal.2023, author = {Tecle, Nyat-Eyob and Hackenberg, Stephan and Scheich, Matthias and Scherzad, Agmal and Hagen, Rudolf and Gehrke, Thomas}, title = {Surgical management of lateral neck abscesses in children: a retrospective analysis of 100 cases}, series = {European Journal of Pediatrics}, volume = {182}, journal = {European Journal of Pediatrics}, number = {1}, doi = {10.1007/s00431-022-04676-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324179}, pages = {431-438}, year = {2023}, abstract = {Cervical abscesses are relatively common infections in pediatric patients. There is an ongoing debate about the necessity and time point of surgical drainage. The identification of a focus of infection might play an important role in facilitating a therapeutic decision. In a retrospective study, 100 pediatric patients aged 1-18 years who underwent incision and drainage of a lateral cervical abscess at our institution were analyzed. Patients were divided into two groups based on whether a focus of infection could be identified or not. Data collection included patient characteristics, microbiological results, antibiotic regimen, and clinical course. A focus of infection was found in 29\% (29/100) of the patients, most frequently in the tonsils. A causative microorganism was found in 75\% (75/100) of all patients, with Staphylococcus aureus and Streptococcus pyogenes being the most common pathogens. All patients received an empiric antibiotic therapy in addition to surgery. Antibiotic medication was changed in 31\% in both groups (9/29 with a focus of infection and 22/71 without a focus of infection) during therapy. Children without an identified focus of infection generally were younger and had more comorbidities reducing immune response while also showing differences in the pathogens involved. There were no complications associated to surgery or antibiotic therapy in any of the patients involved. Conclusion: Children with an identified focus of infection show several differences compared to those with isolated lateral abscesses, especially regarding the microorganisms involved. But the focus of infection seems not to have an impact on patient's outcome. What is Known: • Neck abscesses are a relatively common disease in the pediatric population and may cause serious complications. • Therapy in general consists of intravenous antibiotics with or without surgery. What is New: • The focus identification has no impact on patient's outcome. • Children with an identified focus of infection show several differences compared to those with isolated lateral abscesses, especially regarding their medical history, age, and the microorganisms involved.}, language = {en} } @article{StefanakisBasslerWalczuchetal.2023, author = {Stefanakis, Mona and Bassler, Miriam C. and Walczuch, Tobias R. and Gerhard-Hartmann, Elena and Youssef, Almoatazbellah and Scherzad, Agmal and St{\"o}th, Manuel Bernd and Ostertag, Edwin and Hagen, Rudolf and Steinke, Maria R. and Hackenberg, Stephan and Brecht, Marc and Meyer, Till Jasper}, title = {The impact of tissue preparation on salivary gland tumors investigated by Fourier-transform infrared microspectroscopy}, series = {Journal of Clinical Medicine}, volume = {12}, journal = {Journal of Clinical Medicine}, number = {2}, issn = {2077-0383}, doi = {10.3390/jcm12020569}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304887}, year = {2023}, abstract = {Due to the wide variety of benign and malignant salivary gland tumors, classification and malignant behavior determination based on histomorphological criteria can be difficult and sometimes impossible. Spectroscopical procedures can acquire molecular biological information without destroying the tissue within the measurement processes. Since several tissue preparation procedures exist, our study investigated the impact of these preparations on the chemical composition of healthy and tumorous salivary gland tissue by Fourier-transform infrared (FTIR) microspectroscopy. Sequential tissue cross-sections were prepared from native, formalin-fixed and formalin-fixed paraffin-embedded (FFPE) tissue and analyzed. The FFPE cross-sections were dewaxed and remeasured. By using principal component analysis (PCA) combined with a discriminant analysis (DA), robust models for the distinction of sample preparations were built individually for each parotid tissue type. As a result, the PCA-DA model evaluation showed a high similarity between native and formalin-fixed tissues based on their chemical composition. Thus, formalin-fixed tissues are highly representative of the native samples and facilitate a transfer from scientific laboratory analysis into the clinical routine due to their robust nature. Furthermore, the dewaxing of the cross-sections entails the loss of molecular information. Our study successfully demonstrated how FTIR microspectroscopy can be used as a powerful tool within existing clinical workflows.}, language = {en} } @article{ScherzadMeyerIckrathetal.2019, author = {Scherzad, Agmal and Meyer, Till and Ickrath, Pascal and Gehrke, Thomas Eckhart and Bregenzer, Maximillian and Hagen, Rudolf and Dembski, Sofia and Hackenberg, Stephan}, title = {Cultivation of hMSCs in human plasma prevents the cytotoxic and genotoxic potential of ZnO-NP in vitro}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {23}, issn = {2076-3417}, doi = {10.3390/app9234994}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193063}, year = {2019}, abstract = {Zinc oxide nanoparticles (ZnO-NPs) are commonly used for industrial applications. Consequently, there is increasing exposure of humans to them. The in vitro analysis of cytotoxicity and genotoxicity is commonly performed under standard cell culture conditions. Thus, the question arises of how the results of genotoxicity and cytotoxicity experiments would alter if human plasma was used instead of cell culture medium containing of fetal calf serum (FCS). Human mesenchymal stem cells (hMSCs) were cultured in human plasma and exposed to ZnO-NPs. A cultivation in expansion medium made of DMEM consisting 10\% FCS (DMEM-EM) served as control. Genotoxic and cytotoxic effects were evaluated with the comet and MTT assay, respectively. hMSC differentiation capacity and ZnO-NP disposition were evaluated by histology and transmission electron microscopy (TEM). The protein concentration and the amount of soluble Zn2+ were measured. The cultivation of hMSCs in plasma leads to an attenuation of genotoxic and cytotoxic effects of ZnO-NPs compared to control. The differentiation capacity of hMSCs was not altered. The TEM showed ZnO-NP persistence in cytoplasm in both groups. The concentrations of protein and Zn2+ were higher in plasma than in DMEM-EM. In conclusion, the cultivation of hMSCs in plasma compared to DMEM-EM leads to an attenuation of cytotoxicity and genotoxicity in vitro.}, language = {en} } @article{ScherzadHagenHackenberg2019, author = {Scherzad, Agmal and Hagen, Rudolf and Hackenberg, Stephan}, title = {Current Understanding of Nasal Epithelial Cell Mis-Differentiation}, series = {Journal of Inflammation Research}, volume = {12}, journal = {Journal of Inflammation Research}, doi = {10.2147/JIR.S180853}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228562}, pages = {309-317}, year = {2019}, abstract = {The functional role of the respiratory epithelium is to generate a physical barrier. In addition, the epithelium supports the innate and acquired immune system through various cytokines and chemokines. However, epithelial cells are also involved in the pathogenesis of various respiratory diseases, some of which are mediated by increased permeability of the mucosal membrane or disturbed mucociliary transport. In addition, it has been shown that epithelial cells are involved in the development of inflammatory respiratory diseases. The following review article focuses on the aspects of epithelial mis-differentiation, in particular with respect to nasal mucosal barrier function, epithelial immunogenicity, nasal epithelial-mesenchymal transition and nasal microbiome.}, language = {en} } @article{RadeloffRadeloffTiradoetal.2019, author = {Radeloff, Katrin and Radeloff, Andreas and Tirado, Mario Ramos and Scherzad, Agmal and Hagen, Rudolf and Kleinsasser, Norbert H. and Hackenberg, Stephan}, title = {Long-Term Impact of Zinc Oxide Nanoparticles on Differentiation and Cytokine Secretion of Human Adipose-Derived Stromal Cells}, series = {Materials}, volume = {12}, journal = {Materials}, number = {1823}, doi = {10.3390/ma12111823}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224779}, pages = {1-14}, year = {2019}, abstract = {Zinc oxide nanoparticles (ZnO-NPs) are widely utilized, for example in manufacturing paints and in the cosmetic industry. In addition, there is raising interest in the application of NPs in stem cell research. However, cytotoxic, genotoxic and pro-inflammatory effects were shown for NPs. The aim of this study was to evaluate the impact of ZnO-NPs on cytokine secretion and differentiation properties of human adipose tissue-derived stromal cells (ASCs). Human ASCs were exposed to the subtoxic concentration of 0.2 mu g/mL ZnO-NPs for 24 h. After four weeks of cultivation, adipogenic and osteogenic differentiation procedures were performed. The multi-differentiation potential was confirmed histologically and using polymerase chain reaction (PCR). In addition, the gene expression of IL-6, IL-8, vascular endothelial growth factor (VEGF) and caspase 3 was analyzed. Over the course of four weeks after ZnO-NPs exposure, no significant differences were detected in the gene expression of IL-6, IL-8, VEGF and caspase 3 compared to non-exposed cells. The differentiation was also not affected by the ZnO-NPs. These findings underline the fact, that functionality of ASCs is likely to be unaffected by ZnO-NPs, despite a long-term disposition of NPs in the cells, supposing that the starting concentration was safely in the non-toxic range. This might provide important information for single-use nanomedical applications of ZnO-NPs.}, language = {en} } @article{RadeloffRadeloffRamosTiradoetal.2020, author = {Radeloff, Katrin and Radeloff, Andreas and Ramos Tirado, Mario and Scherzad, Agmal and Hagen, Rudolf and Kleinsasser, Norbert H. and Hackenberg, Stephan}, title = {Toxicity and functional impairment in human adipose tissue-derived stromal cells (hASCs) following long-term exposure to very small iron oxide particles (VSOPs)}, series = {Nanomaterials}, volume = {10}, journal = {Nanomaterials}, number = {4}, issn = {2079-4991}, doi = {10.3390/nano10040741}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203676}, year = {2020}, abstract = {Magnetic nanoparticles (NPs), such as very small iron oxide NPs (VSOPs) can be used for targeted drug delivery, cancer treatment or tissue engineering. Another important field of application is the labelling of mesenchymal stem cells to allow in vivo tracking and visualization of transplanted cells using magnetic resonance imaging (MRI). For these NPs, however, various toxic effects, as well as functional impairment of the exposed cells, are described. The present study evaluates the influence of VSOPs on the multilineage differentiation ability and cytokine secretion of human adipose tissue derived stromal cells (hASCs) after long-term exposure. Human ASCs were labelled with VSOPs, and the efficacy of the labelling was documented over 4 weeks in vitro cultivation of the labelled cells. Unlabelled hASCs served as negative controls. Four weeks after labelling, adipogenic and osteogenic differentiation was histologically evaluated and quantified by polymerase chain reaction (PCR). Changes in gene expression of IL-6, IL-8, VEGF and caspase 3 were determined over 4 weeks. Four weeks after the labelling procedure, labelled and unlabelled hASCs did not differ in the gene expression of IL-6, IL-8, VEGF and caspase 3. Furthermore, the labelling procedure had no influence on the multidifferentiation ability of hASC. The percentage of labelled cells decreased during in vitro expansion over 4 weeks. Labelling with VSOPs and long-term intracellular disposition probably have no influence on the physiological functions of hASCs. This could be important for the future in vivo use of iron oxide NPs.}, language = {en} } @article{MoratinIckrathScherzadetal.2021, author = {Moratin, Helena and Ickrath, Pascal and Scherzad, Agmal and Meyer, Till Jasper and Naczenski, Sebastian and Hagen, Rudolf and Hackenberg, Stephan}, title = {Investigation of the immune modulatory potential of zinc oxide nanoparticles in human lymphocytes}, series = {Nanomaterials}, volume = {11}, journal = {Nanomaterials}, number = {3}, issn = {2079-4991}, doi = {10.3390/nano11030629}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234016}, year = {2021}, abstract = {Zinc oxide nanoparticles (ZnO-NP) are commonly used for a variety of applications in everyday life. In addition, due to its versatility, nanotechnology supports promising approaches in the medical sector. NP can act as drug-carriers in the context of targeted chemo- or immunotherapy, and might also exhibit autonomous immune-modulatory characteristics. Knowledge of potential immunosuppressive or stimulating effects of NP is indispensable for the safety of consumers as well as patients. In this study, primary human peripheral blood lymphocytes of 9 donors were treated with different sub-cytotoxic concentrations of ZnO-NP for the duration of 1, 2, or 3 days. Flow cytometry was performed to investigate changes in the activation profile and the proportion of T cell subpopulations. ZnO-NP applied in this study did not induce any significant alterations in the examined markers, indicating their lack of impairment in terms of immune modulation. However, physicochemical characteristics exert a major influence on NP-associated bioactivity. To allow a precise simulation of the complex molecular processes of immune modulation, a physiological model including the different components of an immune response is needed.}, language = {en} } @article{MeyerStoethMoratinetal.2021, author = {Meyer, Till Jasper and St{\"o}th, Manuel and Moratin, Helena and Ickrath, Pascal and Herrmann, Marietta and Kleinsasser, Norbert and Hagen, Rudolf and Hackenberg, Stephan and Scherzad, Agmal}, title = {Cultivation of head and neck squamous cell carcinoma cells with wound fluid leads to cisplatin resistance via epithelial-mesenchymal transition induction}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms22094474}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258722}, year = {2021}, abstract = {Locoregional recurrence is a major reason for therapy failure after surgical resection of head and neck squamous cell carcinoma (HNSCC). The physiological process of postoperative wound healing could potentially support the proliferation of remaining tumor cells. The aim of this study was to evaluate the influence of wound fluid (WF) on the cell cycle distribution and a potential induction of epithelial-mesenchymal transition (EMT). To verify this hypothesis, we incubated FaDu and HLaC78 cells with postoperative WF from patients after neck dissection. Cell viability in dependence of WF concentration and cisplatin was measured by flow cytometry. Cell cycle analysis was performed by flow cytometry and EMT-marker expression by rtPCR. WF showed high concentrations of interleukin (IL)-6, IL-8, IL-10, CCL2, MCP-1, EGF, angiogenin, and leptin. The cultivation of tumor cells with WF resulted in a significant increase in cell proliferation without affecting the cell cycle. In addition, there was a significant enhancement of the mesenchymal markers Snail 2 and vimentin, while the expression of the epithelial marker E-cadherin was significantly decreased. After cisplatin treatment, tumor cells incubated with WF showed a significantly higher resistance compared with the control group. The effect of cisplatin-resistance was dependent on the WF concentration. In summary, proinflammatory cytokines are predominantly found in WF. Furthermore, the results suggest that EMT can be induced by WF, which could be a possible mechanism for cisplatin resistance.}, language = {en} } @article{MeyerScherzadMoratinetal.2019, author = {Meyer, Till Jasper and Scherzad, Agmal and Moratin, Helena and Gehrke, Thomas Eckert and Killisperger, Julian and Hagen, Rudolf and Wohlleben, Gisela and Polat, B{\"u}lent and Dembski, Sofia and Kleinsasser, Norbert and Hackenberg, Stephan}, title = {The radiosensitizing effect of zinc oxide nanoparticles in sub-cytotoxic dosing is associated with oxidative stress in vitro}, series = {Materials}, volume = {12}, journal = {Materials}, number = {24}, issn = {1996-1944}, doi = {10.3390/ma12244062}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193897}, pages = {4062}, year = {2019}, abstract = {Radioresistance is an important cause of head and neck cancer therapy failure. Zinc oxide nanoparticles (ZnO-NP) mediate tumor-selective toxic effects. The aim of this study was to evaluate the potential for radiosensitization of ZnO-NP. The dose-dependent cytotoxicity of ZnO-NP\(_{20 nm}\) and ZnO-NP\(_{100 nm}\) was investigated in FaDu and primary fibroblasts (FB) by an MTT assay. The clonogenic survival assay was used to evaluate the effects of ZnO-NP alone and in combination with irradiation on FB and FaDu. A formamidopyrimidine-DNA glycosylase (FPG)-modified single-cell microgel electrophoresis (comet) assay was applied to detect oxidative DNA damage in FB as a function of ZnO-NP and irradiation exposure. A significantly increased cytotoxicity after FaDu exposure to ZnO-NP\(_{20 nm}\) or ZnO-NP\(_{100 nm}\) was observed in a concentration of 10 µg/mL or 1 µg/mL respectively in 30 µg/mL of ZnO-NP\(_{20 nm}\) or 20 µg/mL of ZnO-NP\(_{100 nm}\) in FB. The addition of 1, 5, or 10 µg/mL ZnO-NP\(_{20 nm}\) or ZnO-NP\(_{100 nm}\) significantly reduced the clonogenic survival of FaDu after irradiation. The sub-cytotoxic dosage of ZnO-NP\(_{100 nm}\) increased the oxidative DNA damage compared to the irradiated control. This effect was not significant for ZnO-NP\(_{20 nm}\). ZnO-NP showed radiosensitizing properties in the sub-cytotoxic dosage. At least for the ZnO-NP\(_{100 nm}\), an increased level of oxidative stress is a possible mechanism of the radiosensitizing effect.}, language = {en} } @article{MeyerGerhardHartmannLodesetal.2021, author = {Meyer, Till Jasper and Gerhard-Hartmann, Elena and Lodes, Nina and Scherzad, Agmal and Hagen, Rudolf and Steinke, Maria and Hackenberg, Stephan}, title = {Pilot study on the value of Raman spectroscopy in the entity assignment of salivary gland tumors}, series = {PLoS One}, volume = {16}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0257470}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264736}, year = {2021}, abstract = {Background The entity assignment of salivary gland tumors (SGT) based on histomorphology can be challenging. Raman spectroscopy has been applied to analyze differences in the molecular composition of tissues. The aim of this study was to evaluate the suitability of RS for entity assignment in SGT. Methods Raman data were collected in deparaffinized sections of pleomorphic adenomas (PA) and adenoid cystic carcinomas (ACC). Multivariate data and chemometric analysis were completed using the Unscrambler software. Results The Raman spectra detected in ACC samples were mostly assigned to nucleic acids, lipids, and amides. In a principal component-based linear discriminant analysis (LDA) 18 of 20 tumor samples were classified correctly. Conclusion In this proof of concept study, we show that a reliable SGT diagnosis based on LDA algorithm appears possible, despite variations in the entity-specific mean spectra. However, a standardized workflow for tissue sample preparation, measurement setup, and chemometric algorithms is essential to get reliable results.}, language = {en} }