@article{HarringtonScelsiHarteletal.2012, author = {Harrington, John M. and Scelsi, Chris and Hartel, Andreas and Jones, Nicola G. and Engstler, Markus and Capewell, Paul and MacLeod, Annette and Hajduk, Stephen}, title = {Novel African Trypanocidal Agents: Membrane Rigidifying Peptides}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0044384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135179}, pages = {e44384}, year = {2012}, abstract = {The bloodstream developmental forms of pathogenic African trypanosomes are uniquely susceptible to killing by small hydrophobic peptides. Trypanocidal activity is conferred by peptide hydrophobicity and charge distribution and results from increased rigidity of the plasma membrane. Structural analysis of lipid-associated peptide suggests a mechanism of phospholipid clamping in which an internal hydrophobic bulge anchors the peptide in the membrane and positively charged moieties at the termini coordinate phosphates of the polar lipid headgroups. This mechanism reveals a necessary phenotype in bloodstream form African trypanosomes, high membrane fluidity, and we suggest that targeting the plasma membrane lipid bilayer as a whole may be a novel strategy for the development of new pharmaceutical agents. Additionally, the peptides we have described may be valuable tools for probing the biosynthetic machinery responsible for the unique composition and characteristics of African trypanosome plasma membranes.}, language = {en} } @phdthesis{Hartel2013, author = {Hartel, Andreas J. W.}, title = {Die laterale Diffusion des variablen Oberfl{\"a}chenglykoproteins in Trypanosomen und in artifiziellen Membranen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90997}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die Diffusion von Membranproteinen spielt bei einer Vielzahl von zellbiologischen Prozessen eine zentrale Rolle. So hat die Beweglichkeit von Glykosyl-Phosphatidyl-Inositol-(GPI-) verankerten Proteinen zum Beispiel eine tragende Funktion bei der Alzheimer Krankheit, der Creutzfeldt-Jacob Krankheit und der Afrikanischen Schlafkrankheit. Der Erreger der Afrikanischen Schlafkrankheit, Trypanosoma brucei spec., pr{\"a}sentiert auf seiner Zelloberfl{\"a}che einen dichten Mantel aus identischen GPI-verankerten Proteinen. Diese sogenannten Variant Surface Glycoproteins (VSGs) stellen den zentralen Pathogenit{\"a}tsfaktor der Trypanosomen im Blutstrom des Wirtes dar und erm{\"o}glichen dem Parasiten die Antigene Variation. W{\"a}hrend der Antigenen Variation wird der VSGMantel durch einen immunologisch distinkten Mantel ersetzt. Hierf{\"u}r ist die Diffusion der VSG essentiell. In der vorliegenden Arbeit wird die Diffusion des VSG in lebenden Trypanosomen und in artifiziellen Membranen systematisch untersucht. Auf diese Weise werden der Einfluss der lateralen Proteindichte, der N-Glykosylierung und der Proteingr{\"o}ße auf die Diffusion der GPI-verankerten Proteine charakterisiert. Die Mobilit{\"a}t des VSG auf lebenden Trypanosomen ist an der Grenze zu einem Diffusionsschwellenwert, dieser wird allerdings nicht {\"u}berschritten. Die Mobilit{\"a}t des VSG in der N{\"a}he des Diffusionsschwellenwertes wird durch die N-Glykosylierung der VSG erm{\"o}glicht. Außerdem kann gezeigt werden, dass die Gr{\"o}ße der Proteine einen entscheidenden Einfluss auf den Diffusionskoeffizienten der GPI-verankerten Proteine aus{\"u}bt. Zusammengefasst zeigen die Ergebnisse der vorliegenden Arbeit deutlich, dass der VSG-Mantel der Trypanosomen ein, an seine Anforderungen, hoch-adaptiertes System darstellt. W{\"u}rde entweder die laterale Dichte, die N-Glykosylierung oder die Gr{\"o}ße der Proteine beeintr{\"a}chtigt werden, so w{\"a}re die Funktion der Antigenen Variation gest{\"o}rt und die Pathogenit{\"a}t des Parasiten gef{\"a}hrdet. Da die lokale Verteilung von GPI-verankerten Proteinen in biologischen Membranen ein wichtiges funktionelles Konzept darstellt, ist der Einfluss der untersuchten Faktoren nicht nur f{\"u}r den VSG-Mantel relevant, sondern kann auch f{\"u}r das generelle Verst{\"a}ndnis der Dynamik von Proteinen in zellul{\"a}ren Membranen dienen.}, subject = {Trypanosomen}, language = {de} } @article{HartelGloggerJonesetal.2016, author = {Hartel, Andreas J.W. and Glogger, Marius and Jones, Nicola G. and Abuillan, Wasim and Batram, Christopher and Hermann, Anne and Fenz, Susanne F. and Tanaka, Motomu and Engstler, Markus}, title = {N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171368}, year = {2016}, abstract = {The protein density in biological membranes can be extraordinarily high, but the impact of molecular crowding on the diffusion of membrane proteins has not been studied systematically in a natural system. The diversity of the membrane proteome of most cells may preclude systematic studies. African trypanosomes, however, feature a uniform surface coat that is dominated by a single type of variant surface glycoprotein (VSG). Here we study the density-dependence of the diffusion of different glycosylphosphatidylinositol-anchored VSG-types on living cells and in artificial membranes. Our results suggest that a specific molecular crowding threshold (MCT) limits diffusion and hence affects protein function. Obstacles in the form of heterologous proteins compromise the diffusion coefficient and the MCT. The trypanosome VSG-coat operates very close to its MCT. Importantly, our experiments show that N-linked glycans act as molecular insulators that reduce retarding intermolecular interactions allowing membrane proteins to function correctly even when densely packed.}, language = {en} }