@article{JaślanDreyerLuetal.2019, author = {Jaślan, Dawid and Dreyer, Ingo and Lu, Jinping and O'Malley, Ronan and Dindas, Julian and Marten, Irene and Hedrich, Rainer}, title = {Voltage-dependent gating of SV channel TPC1 confers vacuole excitability}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10599-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202029}, pages = {2659}, year = {2019}, abstract = {In contrast to the plasma membrane, the vacuole membrane has not yet been associated with electrical excitation of plants. Here, we show that mesophyll vacuoles from Arabidopsis sense and control the membrane potential essentially via the K\(^+\)-permeable TPC1 and TPK channels. Electrical stimuli elicit transient depolarization of the vacuole membrane that can last for seconds. Electrical excitability is suppressed by increased vacuolar Ca\(^{2+}\) levels. In comparison to wild type, vacuoles from the fou2 mutant, harboring TPC1 channels insensitive to luminal Ca\(^{2+}\), can be excited fully by even weak electrical stimuli. The TPC1-loss-of-function mutant tpc1-2 does not respond to electrical stimulation at all, and the loss of TPK1/TPK3-mediated K\(^{+}\) transport affects the duration of TPC1-dependent membrane depolarization. In combination with mathematical modeling, these results show that the vacuolar K\(^+\)-conducting TPC1 and TPK1/TPK3 channels act in concert to provide for Ca\(^{2+}\)- and voltage-induced electrical excitability to the central organelle of plant cells.}, language = {en} } @article{LuDreyerDickinsonetal.2023, author = {Lu, Jinping and Dreyer, Ingo and Dickinson, Miles Sasha and Panzer, Sabine and Jaślan, Dawid and Navarro-Retamal, Carlos and Geiger, Dietmar and Terpitz, Ulrich and Becker, Dirk and Stroud, Robert M. and Marten, Irene and Hedrich, Rainer}, title = {Vicia faba SV channel VfTPC1 is a hyperexcitable variant of plant vacuole two pore channels}, series = {eLife}, volume = {12}, journal = {eLife}, doi = {10.7554/eLife.86384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350264}, year = {2023}, abstract = {To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca\(^{2+}\). In our search for species-dependent functional TPC1 channel variants with different luminal Ca\(^{2+}\) sensitivity, we found in total three acidic residues present in Ca\(^{2+}\) sensor sites 2 and 3 of the Ca\(^{2+}\)-sensitive AtTPC1 channel from Arabidopsis thaliana that were neutral in its Vicia faba ortholog and also in those of many other Fabaceae. When expressed in the Arabidopsis AtTPC1-loss-of-function background, wild-type VfTPC1 was hypersensitive to vacuole depolarization and only weakly sensitive to blocking luminal Ca\(^{2+}\). When AtTPC1 was mutated for these VfTPC1-homologous polymorphic residues, two neutral substitutions in Ca\(^{2+}\) sensor site 3 alone were already sufficient for the Arabidopsis At-VfTPC1 channel mutant to gain VfTPC1-like voltage and luminal Ca\(^{2+}\) sensitivity that together rendered vacuoles hyperexcitable. Thus, natural TPC1 channel variants exist in plant families which may fine-tune vacuole excitability and adapt it to environmental settings of the particular ecological niche.}, language = {en} } @article{BemmBeckerLarischetal.2016, author = {Bemm, Felix and Becker, Dirk and Larisch, Christina and Kreuzer, Ines and Escalante-Perez, Maria and Schulze, Waltraud X. and Ankenbrand, Markus and Van de Weyer, Anna-Lena and Krol, Elzbieta and Al-Rasheid, Khaled A. and Mith{\"o}fer, Axel and Weber, Andreas P. and Schultz, J{\"o}rg and Hedrich, Rainer}, title = {Venus flytrap carnivorous lifestyle builds on herbivore defense strategies}, series = {Genome Research}, volume = {26}, journal = {Genome Research}, number = {6}, doi = {10.1101/gr.202200.115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188799}, pages = {812-825}, year = {2016}, abstract = {Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.}, language = {en} } @article{KarimiFreundWageretal.2021, author = {Karimi, Sohail M. and Freund, Matthias and Wager, Brittney M. and Knoblauch, Michael and Fromm, J{\"o}rg and M. Mueller, Heike and Ache, Peter and Krischke, Markus and Mueller, Martin J. and M{\"u}ller, Tobias and Dittrich, Marcus and Geilfus, Christoph-Martin and Alfaran, Ahmed H. and Hedrich, Rainer and Deeken, Rosalia}, title = {Under salt stress guard cells rewire ion transport and abscisic acid signaling}, series = {New Phytologist}, volume = {231}, journal = {New Phytologist}, number = {3}, doi = {10.1111/nph.17376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259635}, pages = {1040-1055}, year = {2021}, abstract = {Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads. We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function. Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations. Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity.}, language = {en} } @article{GrausLiRathjeetal.2023, author = {Graus, Dorothea and Li, Kunkun and Rathje, Jan M. and Ding, Meiqi and Krischke, Markus and M{\"u}ller, Martin J. and Cuin, Tracey Ann and Al-Rasheid, Khaled A. S. and Scherzer, S{\"o}nke and Marten, Irene and Konrad, Kai R. and Hedrich, Rainer}, title = {Tobacco leaf tissue rapidly detoxifies direct salt loads without activation of calcium and SOS signaling}, series = {New Phytologist}, volume = {237}, journal = {New Phytologist}, number = {1}, doi = {10.1111/nph.18501}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312152}, pages = {217 -- 231}, year = {2023}, abstract = {Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically-driven leaf movements. Leaf downward movement caused by hydro-passive turgor loss reached a maximum within 2 h. Salt-driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca\(^{2+}\)) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H\(^{+}\)) pumping, a salt uptake-dependent cytosolic alkalization, and a return of the apoplast osmolality to pre-stress levels. Although, transcript numbers of abscisic acid- and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H\(^{+}\)/Na\(^{+}\)-exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na\(^{+}\)) rapidly even under massive salt loads, based on pre-established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca\(^{2+}\) signaling.}, language = {en} } @article{BoehmScherzerKroletal.2016, author = {B{\"o}hm, Jennifer and Scherzer, S{\"o}nke and Krol, Elzbieta and Kreuzer, Ines and von Meyer, Katharina and Lorey, Christian and Mueller, Thomas D. and Shabala, Lana and Monte, Isabel and Salano, Roberto and Al-Rasheid, Khaled A. S. and Rennenberg, Heinz and Shabala, Sergey and Neher, Erwin and Hedrich, Rainer}, title = {The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake}, series = {Current Biology}, volume = {26}, journal = {Current Biology}, number = {3}, doi = {10.1016/j.cub.2015.11.057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128054}, pages = {286-295}, year = {2016}, abstract = {Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant.}, subject = {Venusfliegenfalle}, language = {en} } @article{BoehmScherzerKroletal.2016, author = {B{\"o}hm, Jennifer and Scherzer, S{\"o}nke and Krol, Elzbieta and Kreuzer, Ines and von Meyer, Katharina and Lorey, Christian and Mueller, Thomas D. and Shabala, Lana and Monte, Isabel and Solano, Roberto and Al-Rasheid, Khaled A. S. and Rennenberg, Heinz and Shabala, Sergey and Neher, Erwin and Hedrich, Rainer}, title = {The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake}, series = {Current Biology}, volume = {26}, journal = {Current Biology}, number = {3}, doi = {10.1016/j.cub.2015.11.057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190870}, pages = {286-295}, year = {2016}, abstract = {Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na\(^+\)-rich animal and nutrition for the plant.}, language = {en} } @article{KreuzwieserScheererKruseetal.2014, author = {Kreuzwieser, J{\"u}rgen and Scheerer, Ursel and Kruse, J{\"o}rg and Burzlaff, Tim and Honsel, Anne and Alfarraj, Saleh and Georgiev, Palmen and Schnitzler, J{\"o}rg-Peter and Ghirardo, Andrea and Kreuzer, Ines and Hedrich, Rainer and Rennenberg, Heinz}, title = {The Venus flytrap attracts insects by the release of volatile organic compounds}, series = {Journal of Experimental Botany}, volume = {65}, journal = {Journal of Experimental Botany}, number = {2}, doi = {10.1093/jxb/ert455}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121161}, pages = {755-66}, year = {2014}, abstract = {Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.}, language = {en} } @article{JonesHuangHedrichetal.2022, author = {Jones, Jeffrey J. and Huang, Shouguang and Hedrich, Rainer and Geilfus, Christoph-Martin and Roelfsema, M. Rob G.}, title = {The green light gap: a window of opportunity for optogenetic control of stomatal movement}, series = {New Phytologist}, volume = {236}, journal = {New Phytologist}, number = {4}, doi = {10.1111/nph.18451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293724}, pages = {1237 -- 1244}, year = {2022}, abstract = {Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL-activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL-sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild-type plants. Given that crop plants in controlled-environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light-emitting diodes), GL signals can be used as a remote-control signal that controls stomatal transpiration and water consumption.}, language = {en} } @article{RasouliKianiPouyaLietal.2020, author = {Rasouli, Fatemeh and Kiani-Pouya, Ali and Li, Leiting and Zhang, Heng and Chen, Zhonghua and Hedrich, Rainer and Wilson, Richard and Shabala, Sergey}, title = {Sugar beet (Beta vulgaris) guard cells responses to salinity stress: a proteomic analysis}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms21072331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285765}, year = {2020}, abstract = {Soil salinity is a major environmental constraint affecting crop growth and threatening global food security. Plants adapt to salinity by optimizing the performance of stomata. Stomata are formed by two guard cells (GCs) that are morphologically and functionally distinct from the other leaf cells. These microscopic sphincters inserted into the wax-covered epidermis of the shoot balance CO\(_2\) intake for photosynthetic carbon gain and concomitant water loss. In order to better understand the molecular mechanisms underlying stomatal function under saline conditions, we used proteomics approach to study isolated GCs from the salt-tolerant sugar beet species. Of the 2088 proteins identified in sugar beet GCs, 82 were differentially regulated by salt treatment. According to bioinformatics analysis (GO enrichment analysis and protein classification), these proteins were involved in lipid metabolism, cell wall modification, ATP biosynthesis, and signaling. Among the significant differentially abundant proteins, several proteins classified as "stress proteins" were upregulated, including non-specific lipid transfer protein, chaperone proteins, heat shock proteins, inorganic pyrophosphatase 2, responsible for energized vacuole membrane for ion transportation. Moreover, several antioxidant enzymes (peroxide, superoxidase dismutase) were highly upregulated. Furthermore, cell wall proteins detected in GCs provided some evidence that GC walls were more flexible in response to salt stress. Proteins such as L-ascorbate oxidase that were constitutively high under both control and high salinity conditions may contribute to the ability of sugar beet GCs to adapt to salinity by mitigating salinity-induced oxidative stress.}, language = {en} }