@article{PlanesNinolesRubioetal.2015, author = {Planes, Maria D. and Ni{\~n}oles, Regina and Rubio, Lourdes and Bissoli, Gaetano and Bueso, Eduardo and Garc{\´i}a-S{\´a}nchez, Mar{\´i}a J. and Alejandro, Santiago and Gonzalez-Guzm{\´a}n, Miguel and Hedrich, Rainer and Rodriguez, Pedro L. and Fern{\´a}ndez, Jos{\´e} A. and Serrano, Ram{\´o}n}, title = {A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane \(H^+\)-ATPase and decreased cytosolic pH, \(K^+\), and anions}, series = {Journal of Experimental Botany}, volume = {66}, journal = {Journal of Experimental Botany}, number = {3}, doi = {10.1093/jxb/eru442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121221}, pages = {813-25}, year = {2015}, abstract = {The stress hormone abscisic acid (ABA) induces expression of defence genes in many organs, modulates ion homeostasis and metabolism in guard cells, and inhibits germination and seedling growth. Concerning the latter effect, several mutants of Arabidopsis thaliana with improved capability for \(H^+\) efflux (wat1-1D, overexpression of AKT1 and ost2-1D) are less sensitive to inhibition by ABA than the wild type. This suggested that ABA could inhibit \(H^+\) efflux (\(H^+\)-ATPase) and induce cytosolic acidification as a mechanism of growth inhibition. Measurements to test this hypothesis could not be done in germinating seeds and we used roots as the most convenient system. ABA inhibited the root plasma-membrane H+-ATPase measured in vitro (ATP hydrolysis by isolated vesicles) and in vivo (\(H^+\) efflux from seedling roots). This inhibition involved the core ABA signalling elements: PYR/PYL/RCAR ABA receptors, ABA-inhibited protein phosphatases (HAB1), and ABA-activated protein kinases (SnRK2.2 and SnRK2.3). Electrophysiological measurements in root epidermal cells indicated that ABA, acting through the PYR/PYL/RCAR receptors, induced membrane hyperpolarization (due to \(K^+\) efflux through the GORK channel) and cytosolic acidification. This acidification was not observed in the wat1-1D mutant. The mechanism of inhibition of the \(H^+\)-ATPase by ABA and its effects on cytosolic pH and membrane potential in roots were different from those in guard cells. ABA did not affect the in vivo phosphorylation level of the known activating site (penultimate threonine) of (\(H^+\)-ATPase in roots, and SnRK2.2 phosphorylated in vitro the C-terminal regulatory domain of (\(H^+\)-ATPase while the guard-cell kinase SnRK2.6/OST1 did not.}, language = {en} } @article{DindasDreyerHuangetal.2021, author = {Dindas, Julian and Dreyer, Ingo and Huang, Shouguang and Hedrich, Rainer and Roelfsema, M. Rob G.}, title = {A voltage-dependent Ca\(^{2+}\) homeostat operates in the plant vacuolar membrane}, series = {New Phytologist}, volume = {230}, journal = {New Phytologist}, number = {4}, doi = {10.1111/nph.17272}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259627}, pages = {1449-1460}, year = {2021}, abstract = {Cytosolic calcium signals are evoked by a large variety of biotic and abiotic stimuli and play an important role in cellular and long distance signalling in plants. While the function of the plasma membrane in cytosolic Ca\(^{2+}\) signalling has been intensively studied, the role of the vacuolar membrane remains elusive. A newly developed vacuolar voltage clamp technique was used in combination with live-cell imaging, to study the role of the vacuolar membrane in Ca\(^{2+}\) and pH homeostasis of bulging root hair cells of Arabidopsis. Depolarisation of the vacuolar membrane caused a rapid increase in the Ca\(^{2+}\) concentration and alkalised the cytosol, while hyperpolarisation led to the opposite responses. The relationship between the vacuolar membrane potential, the cytosolic pH and Ca2+ concentration suggests that a vacuolar H\(^{+}\)/Ca\(^{2+}\) exchange mechanism plays a central role in cytosolic Ca2+ homeostasis. Mathematical modelling further suggests that the voltage-dependent vacuolar Ca\(^{2+}\) homeostat could contribute to calcium signalling when coupled to a recently discovered K\(^{+}\) channel-dependent module for electrical excitability of the vacuolar membrane.}, language = {en} } @article{LiPradaDaminelietal.2021, author = {Li, Kunkun and Prada, Juan and Damineli, Daniel S. C. and Liese, Anja and Romeis, Tina and Dandekar, Thomas and Feij{\´o}, Jos{\´e} A. and Hedrich, Rainer and Konrad, Kai Robert}, title = {An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca\(^{2+}\) and H\(^{+}\) reveals new insights into ion signaling in plants}, series = {New Phytologist}, volume = {230}, journal = {New Phytologist}, number = {6}, doi = {10.1111/nph.17202}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239847}, pages = {2292 -- 2310}, year = {2021}, abstract = {Whereas the role of calcium ions (Ca\(^{2+}\)) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca\(^{2+}\) and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca\(^{2+}\)- and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca\(^{2+}\)-dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca\(^{2+}\). In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+-increases and cytosolic acidification by c. 2 min, suggesting a Ca\(^{2+}\)/pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca\(^{2+}\)- and pH-responses. We propose close interrelation in Ca\(^{2+}\)- and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.}, language = {en} } @article{LiuMaierhoferRybaketal.2019, author = {Liu, Yi and Maierhofer, Tobias and Rybak, Katarzyna and Sklenar, Jan and Breakspear, Andy and Johnston, Matthew G. and Fliegmann, Judith and Huang, Shouguang and Roelfsema, M. Rob G. and Felix, Georg and Faulkner, Christine and Menke, Frank L.H. and Geiger, Dietmar and Hedrich, Rainer and Robatzek, Silke}, title = {Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure}, series = {eLife}, volume = {8}, journal = {eLife}, doi = {10.7554/eLife.44474}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202631}, pages = {e44474}, year = {2019}, abstract = {In plants, antimicrobial immune responses involve the cellular release of anions and are responsible for the closure of stomatal pores. Detection of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) induces currents mediated via slow-type (S-type) anion channels by a yet not understood mechanism. Here, we show that stomatal closure to fungal chitin is conferred by the major PRRs for chitin recognition, LYK5 and CERK1, the receptor-like cytoplasmic kinase PBL27, and the SLAH3 anion channel. PBL27 has the capacity to phosphorylate SLAH3, of which S127 and S189 are required to activate SLAH3. Full activation of the channel entails CERK1, depending on PBL27. Importantly, both S127 and S189 residues of SLAH3 are required for chitin-induced stomatal closure and anti-fungal immunity at the whole leaf level. Our results demonstrate a short signal transduction module from MAMP recognition to anion channel activation, and independent of ABA-induced SLAH3 activation.}, language = {en} } @article{DeekenGohlkeScholzetal.2013, author = {Deeken, Rosalia and Gohlke, Jochen and Scholz, Claus-Juergen and Kneitz, Susanne and Weber, Dana and Fuchs, Joerg and Hedrich, Rainer}, title = {DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors}, series = {PLoS Genetics}, journal = {PLoS Genetics}, doi = {10.1371/journal.pgen.1003267}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96318}, year = {2013}, abstract = {Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors.}, language = {en} } @article{SchusterBurghardtAlfarhanetal.2016, author = {Schuster, Ann-Christin and Burghardt, Markus and Alfarhan, Ahmed and Bueno, Amauri and Hedrich, Rainer and Leide, Jana and Thomas, Jacob and Riederer, Markus}, title = {Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures}, series = {AoB Plants}, volume = {8}, journal = {AoB Plants}, doi = {10.1093/aobpla/plw027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160963}, pages = {plw027}, year = {2016}, abstract = {Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10\(^{-5}\) m s\(^{-1}\) at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15-50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm\(^{-2}\)) is mainly composed of pentacyclic triterpenoids (85.2\% of total wax) while long-chain aliphatics contribute only 3.4\%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures.}, language = {en} } @article{ScherzerHuangIosipetal.2022, author = {Scherzer, S{\"o}nke and Huang, Shouguang and Iosip, Anda and Kreuzer, Ines and Yokawa, Ken and Al-Rasheid, Khaled A. S. and Heckmann, Manfred and Hedrich, Rainer}, title = {Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, doi = {10.1038/s41598-022-06915-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300411}, year = {2022}, abstract = {Plants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP). Here we asked how the Ca\(^{2+}\) wave and AP is initiated in the trigger hair and how it is feed into systemic trap calcium-electrical networks. When Dionaea muscipula trigger hairs matures and develop hapto-electric excitability the mechanosensitive anion channel DmMSL10/FLYC1 and voltage dependent SKOR type Shaker K\(^{+}\) channel are expressed in the sheering stress sensitive podium. The podium of the trigger hair is interface to the flytrap's prey capture and processing networks. In the excitable state touch stimulation of the trigger hair evokes a rise in the podium Ca2+ first and before the calcium signal together with an action potential travel all over the trap surface. In search for podium ion channels and pumps mediating touch induced Ca\(^{2+}\) transients, we, in mature trigger hairs firing fast Ca\(^{2+}\) signals and APs, found OSCA1.7 and GLR3.6 type Ca\(^{2+}\) channels and ACA2/10 Ca\(^{2+}\) pumps specifically expressed in the podium. Like trigger hair stimulation, glutamate application to the trap directly evoked a propagating Ca\(^{2+}\) and electrical event. Given that anesthetics affect K\(^+\) channels and glutamate receptors in the animal system we exposed flytraps to an ether atmosphere. As result propagation of touch and glutamate induced Ca\(^{2+}\) and AP long-distance signaling got suppressed, while the trap completely recovered excitability when ether was replaced by fresh air. In line with ether targeting a calcium channel addressing a Ca\(^{2+}\) activated anion channel the AP amplitude declined before the electrical signal ceased completely. Ether in the mechanosensory organ did neither prevent the touch induction of a calcium signal nor this post stimulus decay. This finding indicates that ether prevents the touch activated, glr3.6 expressing base of the trigger hair to excite the capture organ.}, language = {en} } @article{BlachutzikDemirKreuzeretal.2012, author = {Blachutzik, J{\"o}rg O. and Demir, Faith and Kreuzer, Ines and Hedrich, Rainer and Harms, Gregory S.}, title = {Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75433}, year = {2012}, abstract = {Background: Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana. Results: Lipid staining protocols for several fluorescent lipid analogues in plants are presented. The most emphasis was placed on successful protocols for the single and dual staining of sphingolipid enriched regions and exclusion of sphingolipid enriched regions on the plasma membrane of Arabidopsis thaliana protoplasts. A secondary focus was placed to ensure that these staining protocols presented still maintain cell viability. Furthermore, the protocols were successfully tested with the spectrally sensitive dye Laurdan. Conclusion: Almost all existing staining procedures of the plasma membrane with fluorescent lipid analogues are specified for animal cells and tissues. In order to develop lipid staining protocols for plants, procedures were established with critical steps for the plasma membrane staining of Arabidopsis leaf tissue and protoplasts. The success of the plasma membrane staining protocols was additionally verified by measurements of lipid dynamics by the fluorescence recovery after photobleaching technique and by the observation of new phenomena such as time dependent lipid polarization events in living protoplasts, for which a putative physiological relevance is suggested.}, subject = {Arabidopsis thaliana}, language = {de} } @article{DreyerGomezPorrasRianoPachonetal.2012, author = {Dreyer, Ingo and Gomez-Porras, Judith Lucia and Ria{\~n}o-Pach{\´o}n, Diego Mauricio and Hedrich, Rainer and Geiger, Dietmar}, title = {Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs)}, series = {Frontiers in Plant Science}, volume = {3}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2012.00263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189345}, pages = {263}, year = {2012}, abstract = {Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general.}, language = {en} } @article{HuerterFortCottazetal.2018, author = {H{\"u}rter, Anna-Lena and Fort, S{\´e}bastian and Cottaz, Sylvain and Hedrich, Rainer and Geiger, Dietmar and Roelfsema, M. Rob G.}, title = {Mycorrhizal lipochitinoligosaccharides (LCOs) depolarize root hairs of Medicago truncatula}, series = {PLoS ONE}, volume = {13}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0198126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176841}, pages = {e0198126}, year = {2018}, abstract = {Arbuscular Mycorrhiza and Root Nodule Symbiosis are symbiotic interactions with a high benefit for plant growth and crop production. Thus, it is of great interest to understand the developmental process of these symbioses in detail. We analysed very early symbiotic responses of Medicago truncatula root hair cells, by stimulation with lipochitinoligosaccharides specific for the induction of nodules (Nod-LCOs), or the interaction with mycorrhiza (Myc-LCOs). Intracellular micro electrodes were used, in combination with Ca\(^{2+}\) sensitive reporter dyes, to study the relations between cytosolic Ca\(^{2+}\) signals and membrane potential changes. We found that sulfated Myc- as well as Nod-LCOs initiate a membrane depolarization, which depends on the chemical composition of these signaling molecules, as well as the genotype of the plants that were studied. A successive application of sulfated Myc-LCOs and Nod-LCOs resulted only in a single transient depolarization, indicating that Myc-LCOs can repress plasma membrane responses to Nod-LCOs. In contrast to current models, the Nod-LCO-induced depolarization precedes changes in the cytosolic Ca\(^{2+}\) level of root hair cells. The Nod-LCO induced membrane depolarization thus is most likely independent of cytosolic Ca\(^{2+}\) signals and nuclear Ca\(^{2+}\) spiking.}, language = {en} }