@article{SchuppStopperHeidland2016, author = {Schupp, Nicole and Stopper, Helga and Heidland, August}, title = {DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers}, series = {Oxidative Medicine and Cellular Longevity}, volume = {2016}, journal = {Oxidative Medicine and Cellular Longevity}, number = {3592042}, doi = {10.1155/2016/3592042}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166569}, year = {2016}, abstract = {Patients with chronic kidney disease (CKD) exhibit an increased cancer risk compared to a healthy control population. To be able to estimate the cancer risk of the patients and to assess the impact of interventional therapies thereon, it is of particular interest to measure the patients' burden of genomic damage. Chromosomal abnormalities, reduced DNA repair, and DNA lesions were found indeed in cells of patients with CKD. Biomarkers for DNA damage measurable in easily accessible cells like peripheral blood lymphocytes are chromosomal aberrations, structural DNA lesions, and oxidatively modified DNA bases. In this review the most common methods quantifying the three parameters mentioned above, the cytokinesis-block micronucleus assay, the comet assay, and the quantification of 8-oxo-7,8-dihydro-2′-deoxyguanosine, are evaluated concerning the feasibility of the analysis and regarding the marker's potential to predict clinical outcomes.}, language = {en} } @article{BankogluStippGerberetal.2021, author = {Bankoglu, Ezgi Eyluel and Stipp, Franzisca and Gerber, Johanna and Seyfried, Florian and Heidland, August and Bahner, Udo and Stopper, Helga}, title = {Effect of cryopreservation on DNA damage and DNA repair activity in human blood samples in the comet assay}, series = {Archives of Toxicology}, volume = {95}, journal = {Archives of Toxicology}, number = {5}, doi = {10.1007/s00204-021-03012-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265326}, pages = {1831-1841}, year = {2021}, abstract = {The comet assay is a commonly used method to determine DNA damage and repair activity in many types of samples. In recent years, the use of the comet assay in human biomonitoring became highly attractive due to its various modified versions, which may be useful to determine individual susceptibility in blood samples. However, in human biomonitoring studies, working with large sample numbers that are acquired over an extended time period requires some additional considerations. One of the most important issues is the storage of samples and its effect on the outcome of the comet assay. Another important question is the suitability of different blood preparations. In this study, we analysed the effect of cryopreservation on DNA damage and repair activity in human blood samples. In addition, we investigated the suitability of different blood preparations. The alkaline and FPG as well as two different types of repair comet assay and an in vitro hydrogen peroxide challenge were applied. Our results confirmed that cryopreserved blood preparations are suitable for investigating DNA damage in the alkaline and FPG comet assay in whole blood, buffy coat and PBMCs. Ex vivo hydrogen peroxide challenge yielded its optimal effect in isolated PBMCs. The utilised repair comet assay with either UVC or hydrogen peroxide-induced lesions and an aphidicolin block worked well in fresh PBMCs. Cryopreserved PBMCs could not be used immediately after thawing. However, a 16-h recovery with or without mitotic stimulation enabled the application of the repair comet assay, albeit only in a surviving cell fraction.}, language = {en} } @article{SchuppHeidlandStopper2010, author = {Schupp, Nicole and Heidland, August and Stopper, Helga}, title = {Genomic Damage in Endstage Renal Disease - Contribution of Uremic Toxins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68653}, year = {2010}, abstract = {Patients with end-stage renal disease (ESRD), whether on conservative, peritoneal or hemodialysis therapy, have elevated genomic damage in peripheral blood lymphocytes and an increased cancer incidence, especially of the kidney. The damage is possibly due to accumulation of uremic toxins like advanced glycation endproducts or homocysteine. However, other endogenous substances with genotoxic properties, which are increased in ESRD, could be involved, such as the blood pressure regulating hormones angiotensin II and aldosterone or the inflammatory cytokine TNF-. This review provides an overview of genomic damage observed in ESRD patients, focuses on possible underlying causes and shows modulations of the damage by modern dialysis strategies and vitamin upplementation.}, subject = {Toxin}, language = {en} } @article{RapaDiIorioCampigliaetal.2019, author = {Rapa, Shara Francesca and Di Iorio, Biagio Raffaele and Campiglia, Pietro and Heidland, August and Marzocco, Stefania}, title = {Inflammation and oxidative stress in chronic kidney disease — Potential therapeutic role of minerals, vitamins and plant-derived metabolites}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms21010263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284998}, year = {2019}, abstract = {Chronic kidney disease (CKD) is a debilitating pathology with various causal factors, culminating in end stage renal disease (ESRD) requiring dialysis or kidney transplantation. The progression of CKD is closely associated with systemic inflammation and oxidative stress, which are responsible for the manifestation of numerous complications such as malnutrition, atherosclerosis, coronary artery calcification, heart failure, anemia and mineral and bone disorders, as well as enhanced cardiovascular mortality. In addition to conventional therapy with anti-inflammatory and antioxidative agents, growing evidence has indicated that certain minerals, vitamins and plant-derived metabolites exhibit beneficial effects in these disturbances. In the current work, we review the anti-inflammatory and antioxidant properties of various agents which could be of potential benefit in CKD/ESRD. However, the related studies were limited due to small sample sizes and short-term follow-up in many trials. Therefore, studies of several anti-inflammatory and antioxidant agents with long-term follow-ups are necessary.}, language = {en} } @article{PalkovitsŠebekovaKlenovicsetal.2013, author = {Palkovits, Mikl{\´o}s and Šebekov{\´a}, Katar{\´i}na and Klenovics, Kristina Simon and Kebis, Anton and Fazeli, Gholamreza and Bahner, Udo and Heidland, August}, title = {Neuronal Activation in the Central Nervous System of Rats in the Initial Stage of Chronic Kidney Disease-Modulatory Effects of Losartan and Moxonidine}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0066543}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130108}, pages = {e66543}, year = {2013}, abstract = {The effect of mild chronic renal failure (CRF) induced by 4/6-nephrectomy (4/6NX) on central neuronal activations was investigated by c-Fos immunohistochemistry staining and compared to sham-operated rats. In the 4/6 NX rats also the effect of the angiotensin receptor blocker, losartan, and the central sympatholyticum moxonidine was studied for two months. In serial brain sections Fos-immunoreactive neurons were localized and classified semiquantitatively. In 37 brain areas/nuclei several neurons with different functional properties were strongly affected in 4/6NX. It elicited a moderate to high Fos-activity in areas responsible for the monoaminergic innervation of the cerebral cortex, the limbic system, the thalamus and hypothalamus (e.g. noradrenergic neurons of the locus coeruleus, serotonergic neurons in dorsal raphe, histaminergic neurons in the tuberomamillary nucleus). Other monoaminergic cell groups (A5 noradrenaline, C1 adrenaline, medullary raphe serotonin neurons) and neurons in the hypothalamic paraventricular nucleus (innervating the sympathetic preganglionic neurons and affecting the peripheral sympathetic outflow) did not show Fos-activity. Stress- and pain-sensitive cortical/subcortical areas, neurons in the limbic system, the hypothalamus and the circumventricular organs were also affected by 4/6NX. Administration of losartan and more strongly moxonidine modulated most effects and particularly inhibited Fos-activity in locus coeruleus neurons. In conclusion, 4/6NX elicits high activity in central sympathetic, stress- and pain-related brain areas as well as in the limbic system, which can be ameliorated by losartan and particularly by moxonidine. These changes indicate a high sensitivity of CNS in initial stages of CKD which could be causative in clinical disturbances.}, language = {en} } @article{MaglioccaMoneDiIorioetal.2022, author = {Magliocca, Giorgia and Mone, Pasquale and Di Iorio, Biagio Raffaele and Heidland, August and Marzocco, Stefania}, title = {Short-chain fatty acids in Chronic Kidney Disease: focus on inflammation and oxidative stress regulation}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {10}, issn = {1422-0067}, doi = {10.3390/ijms23105354}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284587}, year = {2022}, abstract = {Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress.}, language = {en} } @article{MarzoccoFazeliDiMiccoetal.2018, author = {Marzocco, Stefania and Fazeli, Gholamreza and Di Micco, Lucia and Autore, Giuseppina and Adesso, Simona and Dal Piaz, Fabrizio and Heidland, August and Di Iorio, Biagio}, title = {Supplementation of short-chain fatty acid, sodium propionate, in patients on maintenance hemodialysis: beneficial effects on inflammatory parameters and gut-derived uremic toxins, a pilot study (PLAN Study)}, series = {Journal of Clinical Medicine}, volume = {7}, journal = {Journal of Clinical Medicine}, number = {10}, issn = {2077-0383}, doi = {10.3390/jcm7100315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197626}, pages = {315}, year = {2018}, abstract = {Background: In end-stage renal disease (ESRD), gut-derived uremic toxins play a crucial role in the systemic inflammation and oxidative stress promoting the excess morbidity and mortality. The biochemical derangement is in part a consequence of an insufficient generation of short-chain fatty acids (SCFA) due to the dysbiosis of the gut and an insufficient consumption of the fermentable complex carbohydrates. Aim of the study: The primary end-point was to evaluate the potential efficacy of SCFA (specifically, sodium propionate (SP)) for patients on maintenance hemodialysis (MHD) on systemic inflammation. Secondary end-points included potential attenuation of oxidative stress markers, insulin resistance and production of gut-derived uremic toxins indoxyl sulfate and p-cresol sulfate, as well as health status after SP supplementation. Study design: We performed a single-center non-randomized pilot study in 20 MHD patients. They received the food additive SP with a daily intake of 2 × 500 mg in the form of capsules for 12 weeks. Pre-dialysis blood samples were taken at the beginning, after six weeks and at the end of the administration period, as well as four weeks after withdrawal of the treatment. Results: The subjects revealed a significant decline of inflammatory parameters C-reactive protein (-46\%), interleukin IL-2 (-27\%) and IL-17 (-15\%). The inflammatory parameters IL-6 and IFN-gamma showed a mild non-significant reduction and the anti-inflammatory cytokine IL-10 increased significantly (+71\%). While the concentration of bacterial endotoxins and TNF-α remained unchanged, the gut-derived uremic toxins, indoxyl sulfate (-30\%) and p-cresyl sulfate (-50\%), revealed a significant decline. The SP supplementation reduced the parameters of oxidative stress malondialdehyde (-32\%) and glutathione peroxidase activity (-28\%). The serum insulin levels dropped by 30\% and the HOMA-index by 32\%. The reduction of inflammatory parameters was associated with a lowering of ferritin and a significant increase in transferrin saturation (TSAT). Four weeks after the end of the treatment phase, all improved parameters deteriorated again. Evaluation of the psycho-physical performance with the short form 36 (SF-36) questionnaire showed an enhancement in the self-reported physical functioning, general health, vitality and mental health. The SP supplementation was well tolerated and without important side effects. No patient had left the study due to intolerance to the medication. The SP supplementation in MHD patients reduced pro-inflammatory parameters and oxidative stress and improved insulin resistance and iron metabolism. Furthermore, SP effectively lowered the important gut-derived uremic toxins indoxyl and p-cresol sulfate. These improvements were associated with a better quality of life. Further controlled studies are required in a larger cohort to evaluate the clinical outcome.}, language = {en} }