@inproceedings{SchlosserJarschelDuellietal.2010, author = {Schlosser, Daniel and Jarschel, Michael and Duelli, Michael and Hoßfeld, Tobias and Hoffmann, Klaus and Hoffmann, Marco and Morper, Hans Jochen and Jurca, Dan and Khan, Ashiq}, title = {A Use Case Driven Approach to Network Virtualization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55611}, year = {2010}, abstract = {In today's Internet, services are very different in their requirements on the underlying transport network. In the future, this diversity will increase and it will be more difficult to accommodate all services in a single network. A possible approach to cope with this diversity within future networks is the introduction of support for running isolated networks for different services on top of a single shared physical substrate. This would also enable easy network management and ensure an economically sound operation. End-customers will readily adopt this approach as it enables new and innovative services without being expensive. In order to arrive at a concept that enables this kind of network, it needs to be designed around and constantly checked against realistic use cases. In this contribution, we present three use cases for future networks. We describe functional blocks of a virtual network architecture, which are necessary to support these use cases within the network. Furthermore, we discuss the interfaces needed between the functional blocks and consider standardization issues that arise in order to achieve a global consistent control and management structure of virtual networks.}, subject = {Virtualisierung}, language = {en} } @techreport{GrigorjewDiederichHossfeldetal.2022, type = {Working Paper}, author = {Grigorjew, Alexej and Diederich, Philip and Hoßfeld, Tobias and Kellerer, Wolfgang}, title = {Affordable Measurement Setups for Networking Device Latency with Sub-Microsecond Accuracy}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280751}, pages = {5}, year = {2022}, abstract = {This document presents a networking latency measurement setup that focuses on affordability and universal applicability, and can provide sub-microsecond accuracy. It explains the prerequisites, hardware choices, and considerations to respect during measurement. In addition, it discusses the necessity for exhaustive latency measurements when dealing with high availability and low latency requirements. Preliminary results show that the accuracy is within ±0.02 μs when used with the Intel I350-T2 network adapter.}, subject = {Datennetz}, language = {en} } @techreport{GrigorjewMetzgerHossfeldetal.2020, author = {Grigorjew, Alexej and Metzger, Florian and Hoßfeld, Tobias and Specht, Johannes and G{\"o}tz, Franz-Josef and Chen, Feng and Schmitt, J{\"u}rgen}, title = {Asynchronous Traffic Shaping with Jitter Control}, doi = {10.25972/OPUS-20582}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205824}, pages = {8}, year = {2020}, abstract = {Asynchronous Traffic Shaping enabled bounded latency with low complexity for time sensitive networking without the need for time synchronization. However, its main focus is the guaranteed maximum delay. Jitter-sensitive applications may still be forced towards synchronization. This work proposes traffic damping to reduce end-to-end delay jitter. It discusses its application and shows that both the prerequisites and the guaranteed delay of traffic damping and ATS are very similar. Finally, it presents a brief evaluation of delay jitter in an example topology by means of a simulation and worst case estimation.}, subject = {Echtzeit}, language = {en} } @techreport{NguyenLohHossfeld2023, type = {Working Paper}, author = {Nguyen, Kien and Loh, Frank and Hoßfeld, Tobias}, title = {Challenges of Serverless Deployment in Edge-MEC-Cloud}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32202}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322025}, pages = {4}, year = {2023}, abstract = {The emerging serverless computing may meet Edge Cloud in a beneficial manner as the two offer flexibility and dynamicity in optimizing finite hardware resources. However, the lack of proper study of a joint platform leaves a gap in literature about consumption and performance of such integration. To this end, this paper identifies the key questions and proposes a methodology to answer them.}, language = {en} } @article{HossfeldHeegaardKellerer2023, author = {Hossfeld, Tobias and Heegaard, Poul E. and Kellerer, Wolfgang}, title = {Comparing the scalability of communication networks and systems}, series = {IEEE Access}, volume = {11}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2023.3314201}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349403}, pages = {101474-101497}, year = {2023}, abstract = {Scalability is often mentioned in literature, but a stringent definition is missing. In particular, there is no general scalability assessment which clearly indicates whether a system scales or not or whether a system scales better than another. The key contribution of this article is the definition of a scalability index (SI) which quantifies if a system scales in comparison to another system, a hypothetical system, e.g., linear system, or the theoretically optimal system. The suggested SI generalizes different metrics from literature, which are specialized cases of our SI. The primary target of our scalability framework is, however, benchmarking of two systems, which does not require any reference system. The SI is demonstrated and evaluated for different use cases, that are (1) the performance of an IoT load balancer depending on the system load, (2) the availability of a communication system depending on the size and structure of the network, (3) scalability comparison of different location selection mechanisms in fog computing with respect to delays and energy consumption; (4) comparison of time-sensitive networking (TSN) mechanisms in terms of efficiency and utilization. Finally, we discuss how to use and how not to use the SI and give recommendations and guidelines in practice. To the best of our knowledge, this is the first work which provides a general SI for the comparison and benchmarking of systems, which is the primary target of our scalability analysis.}, language = {en} } @techreport{RaffeckGeisslerHossfeld2022, type = {Working Paper}, author = {Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {DBM: Decentralized Burst Mitigation for Self-Organizing LoRa Deployments}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280809}, pages = {4}, year = {2022}, abstract = {This work proposes a novel approach to disperse dense transmission intervals and reduce bursty traffic patterns without the need for centralized control. Furthermore, by keeping the mechanism as close to the Long Range Wide Area Network (LoRaWAN) standard as possible the suggested mechanism can be deployed within existing networks and can even be co-deployed with other devices.}, subject = {Datennetz}, language = {en} } @article{HossfeldHeegaardSkrorinKapovetal.2020, author = {Hoßfeld, Tobias and Heegaard, Poul E. and Skrorin-Kapov, Lea and Varela, Mart{\´i}n}, title = {Deriving QoE in systems: from fundamental relationships to a QoE-based Service-level Quality Index}, series = {Quality and User Experience}, volume = {5}, journal = {Quality and User Experience}, issn = {2366-0139}, doi = {10.1007/s41233-020-00035-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235597}, year = {2020}, abstract = {With Quality of Experience (QoE) research having made significant advances over the years, service and network providers aim at user-centric evaluation of the services provided in their system. The question arises how to derive QoE in systems. In the context of subjective user studies conducted to derive relationships between influence factors and QoE, user diversity leads to varying distributions of user rating scores for different test conditions. Such models are commonly exploited by providers to derive various QoE metrics in their system, such as expected QoE, or the percentage of users rating above a certain threshold. The question then becomes how to combine (a) user rating distributions obtained from subjective studies, and (b) system parameter distributions, so as to obtain the actual observed QoE distribution in the system? Moreover, how can various QoE metrics of interest in the system be derived? We prove fundamental relationships for the derivation of QoE in systems, thus providing an important link between the QoE community and the systems community. In our numerical examples, we focus mainly on QoE metrics. We furthermore provide a more generalized view on quantifying the quality of systems by defining a QoE-based Service-level Quality Index. This index exploits the fact that quality can be seen as a proxy measure for utility. Following the assumption that not all user sessions should be weighted equally, we aim to provide a generic framework that can be utilized to quantify the overall utility of a service delivered by a system.}, language = {en} } @techreport{VomhoffGeisslerHossfeld2022, type = {Working Paper}, author = {Vomhoff, Viktoria and Geißler, Stefan and Hoßfeld, Tobias}, title = {Identification of Signaling Patterns in Mobile IoT Signaling Traffic}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280819}, pages = {4}, year = {2022}, abstract = {We attempt to identify sequences of signaling dialogs, to strengthen our understanding of the signaling behavior of IoT devices by examining a dataset containing over 270.000 distinct IoT devices whose signaling traffic has been observed over a 31-day period in a 2G network [4]. We propose a set of rules that allows the assembly of signaling dialogs into so-called sessions in order to identify common patterns and lay the foundation for future research in the areas of traffic modeling and anomaly detection.}, subject = {Datennetz}, language = {en} } @article{BorchertSeufertGamboaetal.2020, author = {Borchert, Kathrin and Seufert, Anika and Gamboa, Edwin and Hirth, Matthias and Hoßfeld, Tobias}, title = {In Vitro vs In Vivo: Does the Study's Interface Design Influence Crowdsourced Video QoE?}, series = {Quality and User Experience}, volume = {6}, journal = {Quality and User Experience}, issn = {2366-0139}, doi = {10.1007/s41233-020-00041-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235586}, year = {2020}, abstract = {Evaluating the Quality of Experience (QoE) of video streaming and its influence factors has become paramount for streaming providers, as they want to maintain high satisfaction for their customers. In this context, crowdsourced user studies became a valuable tool to evaluate different factors which can affect the perceived user experience on a large scale. In general, most of these crowdsourcing studies either use, what we refer to, as an in vivo or an in vitro interface design. In vivo design means that the study participant has to rate the QoE of a video that is embedded in an application similar to a real streaming service, e.g., YouTube or Netflix. In vitro design refers to a setting, in which the video stream is separated from a specific service and thus, the video plays on a plain background. Although these interface designs vary widely, the results are often compared and generalized. In this work, we use a crowdsourcing study to investigate the influence of three interface design alternatives, an in vitro and two in vivo designs with different levels of interactiveness, on the perceived video QoE. Contrary to our expectations, the results indicate that there is no significant influence of the study's interface design in general on the video experience. Furthermore, we found that the in vivo design does not reduce the test takers' attentiveness. However, we observed that participants who interacted with the test interface reported a higher video QoE than other groups.}, language = {en} } @techreport{LohGeisslerHossfeld2022, type = {Working Paper}, author = {Loh, Frank and Geißler, Stefan and Hoßfeld, Tobias}, title = {LoRaWAN Network Planning in Smart Environments: Towards Reliability, Scalability, and Cost Reduction}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28082}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280829}, pages = {4}, year = {2022}, abstract = {The goal in this work is to present a guidance for LoRaWAN planning to improve overall reliability for message transmissions and scalability. At the end, the cost component is discussed. Therefore, a five step approach is presented that helps to plan a LoRaWAN deployment step by step: Based on the device locations, an initial gateway placement is suggested followed by in-depth frequency and channel access planning. After an initial planning phase, updates for channel access and the initial gateway planning is suggested that should also be done periodically during network operation. Since current gateway placement approaches are only studied with random channel access, there is a lot of potential in the cell planning phase. Furthermore, the performance of different channel access approaches is highly related on network load, and thus cell size and sensor density. Last, the influence of different cell planning ideas on expected costs are discussed.}, subject = {Datennetz}, language = {en} }