@article{WippelFoertschHuppetal.2011, author = {Wippel, Carolin and F{\"o}rtsch, Christina and Hupp, Sabrina and Maier, Elke and Benz, Roland and Ma, Jiangtao and Mitchell, Timothy J and Iliev, Asparouh I}, title = {Extracellular Calcium Reduction Strongly Increases the Lytic Capacity of Pneumolysin From Streptococcus Pneumoniae in Brain Tissue}, series = {The Journal of Infectious Diseases}, volume = {204}, journal = {The Journal of Infectious Diseases}, number = {6}, doi = {10.1093/infdis/jir434}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139356}, pages = {930-936}, year = {2011}, abstract = {Background Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. Methods  Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. Results  The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. Conclusions  Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis. "}, language = {en} } @article{HuppFoertschWippeletal.2013, author = {Hupp, Sabrina and F{\"o}rtsch, Christina and Wippel, Carolin and Ma, Jiangtao and Mitchell, Timothy J. and Iliev, Asparouh I.}, title = {Direct Transmembrane Interaction between Actin and the Pore-Competent, Cholesterol-Dependent Cytolysin Pneumolysin}, series = {Journal of Molecular Biology}, volume = {425}, journal = {Journal of Molecular Biology}, number = {3}, doi = {10.1016/j.jmb.2012.11.034}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132297}, pages = {636-646}, year = {2013}, abstract = {The eukaryotic actin cytoskeleton is an evolutionarily well-established pathogen target, as a large number of bacterial factors disturb its dynamics to alter the function of the host cells. These pathogenic factors modulate or mimic actin effector proteins or they modify actin directly, leading to an imbalance of the precisely regulated actin turnover. Here, we show that the pore-forming, cholesterol-dependent cytolysin pneumolysin (PLY), a major neurotoxin of Streptococcus pneumoniae, has the capacity to bind actin directly and to enhance actin polymerisation in vitro. In cells, the toxin co-localised with F-actin shortly after exposure, and this direct interaction was verified by F{\"o}rster resonance energy transfer. PLY was capable of exerting its effect on actin through the lipid bilayer of giant unilamellar vesicles, but only when its pore competence was preserved. The dissociation constant of G-actin binding to PLY in a biochemical environment was 170-190 nM, which is indicative of a high-affinity interaction, comparable to the affinity of other intracellular actin-binding factors. Our results demonstrate the first example of a direct interaction of a pore-forming toxin with cytoskeletal components, suggesting that the cross talk between pore-forming cytolysins and cells is more complex than previously thought.}, language = {en} }