@article{BoivinBeyersdorfPalmetal.2015, author = {Boivin, Val{\´e}rie and Beyersdorf, Niklas and Palm, Dieter and Nikolaev, Viacheslav O. and Schlipp, Angela and M{\"u}ller, Justus and Schmidt, Doris and Kocoski, Vladimir and Kerkau, Thomas and H{\"u}nig, Thomas and Ertl, Georg and Lohse, Martin J. and Jahns, Roland}, title = {Novel Receptor-Derived Cyclopeptides to Treat Heart Failure Caused by \(Anti-β_1-Adrenoceptor\) Antibodies in a Human-Analogous Rat Model}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {2}, doi = {10.1371/journal.pone.0117589}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126028}, pages = {e0117589}, year = {2015}, abstract = {Despite recent therapeutic advances the prognosis of heart failure remains poor. Recent research suggests that heart failure is a heterogeneous syndrome and that many patients have stimulating auto-antibodies directed against the second extracellular loop of the \(β_1\) adrenergic receptor \((β_1EC2)\). In a human-analogous rat model such antibodies cause myocyte damage and heart failure. Here we used this model to test a novel antibody-directed strategy aiming to prevent and/or treat antibody-induced cardiomyopathy. To generate heart failure, we immunised n = 76/114 rats with a fusion protein containing the human β1EC2 (amino-acids 195-225) every 4 weeks; n = 38/114 rats were control-injected with 0.9\% NaCl. Intravenous application of a novel cyclic peptide mimicking \(β_1EC2\) (\(β_1EC2-CP\), 1.0 mg/kg every 4 weeks) or administration of the \(β_1-blocker\) bisoprolol (15 mg/kg/day orally) was initiated either 6 weeks (cardiac function still normal, prevention-study, n = 24 (16 treated vs. 8 untreated)) or 8.5 months after the 1st immunisation (onset of cardiomyopathy, therapy-study, n = 52 (40 treated vs. 12 untreated)); n = 8/52 rats from the therapy-study received \(β_1EC2-CP/bisoprolol\) co-treatment. We found that \(β_1EC2-CP\) prevented and (alone or as add-on drug) treated antibody-induced cardiac damage in the rat, and that its efficacy was superior to mono-treatment with bisoprolol, a standard drug in heart failure. While bisoprolol mono-therapy was able to stop disease-progression, \(β_1EC2-CP\) mono-therapy -or as an add-on to bisoprolol- almost fully reversed antibody-induced cardiac damage. The cyclo¬peptide acted both by scavenging free \(anti-β_1EC2-antibodies\) and by targeting \(β_1EC2\)-specific memory B-cells involved in antibody-production. Our model provides the basis for the clinical translation of a novel double-acting therapeutic strategy that scavenges harmful \(anti-β_1EC2-antibodies\) and also selectively depletes memory B-cells involved in the production of such antibodies. Treatment with immuno-modulating cyclopeptides alone or as an add-on to \(β_1\)-blockade represents a promising new therapeutic option in immune-mediated heart failure.}, language = {en} } @article{FreyGassenmaierHofmannetal.2020, author = {Frey, Anna and Gassenmaier, Tobias and Hofmann, Ulrich and Schmitt, Dominik and Fette, Georg and Marx, Almuth and Heterich, Sabine and Boivin-Jahns, Val{\´e}rie and Ertl, Georg and Bley, Thorsten and Frantz, Stefan and Jahns, Roland and St{\"o}rk, Stefan}, title = {Coagulation factor XIII activity predicts left ventricular remodelling after acute myocardial infarction}, series = {ESC Heart Failure}, volume = {7}, journal = {ESC Heart Failure}, number = {5}, doi = {10.1002/ehf2.12774}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236013}, pages = {2354-2364}, year = {2020}, abstract = {Aims Acute myocardial infarction (MI) is the major cause of chronic heart failure. The activity of blood coagulation factor XIII (FXIIIa) plays an important role in rodents as a healing factor after MI, whereas its role in healing and remodelling processes in humans remains unclear. We prospectively evaluated the relevance of FXIIIa after acute MI as a potential early prognostic marker for adequate healing. Methods and results This monocentric prospective cohort study investigated cardiac remodelling in patients with ST-elevation MI and followed them up for 1 year. Serum FXIIIa was serially assessed during the first 9 days after MI and after 2, 6, and 12 months. Cardiac magnetic resonance imaging was performed within 4 days after MI (Scan 1), after 7 to 9 days (Scan 2), and after 12 months (Scan 3). The FXIII valine-to-leucine (V34L) single-nucleotide polymorphism rs5985 was genotyped. One hundred forty-six patients were investigated (mean age 58 ± 11 years, 13\% women). Median FXIIIa was 118 \% (quartiles, 102-132\%) and dropped to a trough on the second day after MI: 109\%(98-109\%; P < 0.001). FXIIIa recovered slowly over time, reaching the baseline level after 2 to 6 months and surpassed baseline levels only after 12 months: 124 \% (110-142\%). The development of FXIIIa after MI was independent of the genotype. FXIIIa on Day 2 was strongly and inversely associated with the relative size of MI in Scan 1 (Spearman's ρ = -0.31; P = 0.01) and Scan 3 (ρ = -0.39; P < 0.01) and positively associated with left ventricular ejection fraction: ρ = 0.32 (P < 0.01) and ρ = 0.24 (P = 0.04), respectively. Conclusions FXIII activity after MI is highly dynamic, exhibiting a significant decline in the early healing period, with reconstitution 6 months later. Depressed FXIIIa early after MI predicted a greater size of MI and lower left ventricular ejection fraction after 1 year. The clinical relevance of these findings awaits to be tested in a randomized trial.}, language = {en} } @article{MorbachBeyersdorfKerkauetal.2021, author = {Morbach, Caroline and Beyersdorf, Niklas and Kerkau, Thomas and Ramos, Gustavo and Sahiti, Floran and Albert, Judith and Jahns, Roland and Ertl, Georg and Angermann, Christiane E. and Frantz, Stefan and Hofmann, Ulrich and St{\"o}rk, Stefan}, title = {Adaptive anti-myocardial immune response following hospitalization for acute heart failure}, series = {ESC Heart Failure}, volume = {8}, journal = {ESC Heart Failure}, number = {4}, doi = {10.1002/ehf2.13376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258907}, pages = {3348-3353}, year = {2021}, abstract = {Aims It has been hypothesized that cardiac decompensation accompanying acute heart failure (AHF) episodes generates a pro-inflammatory environment boosting an adaptive immune response against myocardial antigens, thus contributing to progression of heart failure (HF) and poor prognosis. We assessed the prevalence of anti-myocardial autoantibodies (AMyA) as biomarkers reflecting adaptive immune responses in patients admitted to the hospital for AHF, followed the change in AMyA titres for 6 months after discharge, and evaluated their prognostic utility. Methods and results AMyA were determined in n = 47 patients, median age 71 (quartiles 60; 80) years, 23 (49\%) female, and 24 (51\%) with HF with preserved ejection fraction, from blood collected at baseline (time point of hospitalization) and at 6 month follow-up (visit F6). Patients were followed for 18 months (visit F18). The prevalence of AMyA increased from baseline (n = 21, 45\%) to F6 (n = 36, 77\%; P < 0.001). At F6, the prevalence of AMyA was higher in patients with HF with preserved ejection fraction (n = 21, 88\%) compared with patients with reduced ejection fraction (n = 14, 61\%; P = 0.036). During the subsequent 12 months after F6, that is up to F18, patients with newly developed AMyA at F6 had a higher risk for the combined endpoint of death or rehospitalization for HF (hazard ratio 4.79, 95\% confidence interval 1.13-20.21; P = 0.033) compared with patients with persistent or without AMyA at F6. Conclusions Our results support the hypothesis that AHF may induce patterns of adaptive immune responses. More studies in larger populations and well-defined patient subgroups are needed to further clarify the role of the adaptive immune system in HF progression.}, language = {en} }