@article{WernerWakabyashiChenetal.2018, author = {Werner, Rudolf and Wakabyashi, Hiroshi and Chen, Xinyu and Hirano, Mitsuru and Shinaji, Tetsuya and Lapa, Constantin and Rowe, Steven and Javadi, Mehrbod and Higuchi, Takahiro}, title = {Functional renal imaging with \(^{18}\)F-FDS PET in rat models of renal disorders}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.203828}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161279}, year = {2018}, abstract = {Background: Precise regional quantitative assessment of renal function is limited with conventional \(^{99m}\)Tc-labeled renal radiotracers. A recent study reported that the positron emission tomography (PET) radiotracer 2-deoxy-2-(\(^{18}\)F-fluorosorbitol (\(^{18}\)F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, (\(^{18}\)F-FDS is available via simple reduction from routinely used 2-deoxy-2-(\(^{18}\)F-fluoro-D-glucose ((\(^{18}\)F-FDG). We aimed to further investigate the potential of (\(^{18}\)F-FDS PET as a functional renal imaging agent using rat models of kidney diseases. Methods: Two different rat models of renal impairment were investigated: Glycerol induced acute renal failure (ARF) by intramuscular administration of glycerol in hind legs and unilateral ureteral obstruction (UUO) by ligation of the left ureter. 24h after these treatments, dynamic 30 min 18F-FDS PET data were acquired using a dedicated small animal PET system. Urine 18F-FDS radioactivity 30 min after radiotracer injection was measured together with co-injected \(^{99m}\)Tc-diethylenetriaminepentaacetic acid (\(^{99m}\)Tc-DTPA) urine activity. Results: Dynamic PET imaging demonstrated rapid (\(^{18}\)F-FDS accumulation in the renal cortex and rapid radiotracer excretion via kidneys in control healthy rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in ARF rats and UUO-treated kidneys. Measured urine radiotracer concentrations of (\(^{18}\)F-FDS and \(^{99m}\)Tc-DTPA were well correlated (R=0.84, P<0.05). Conclusions: (\(^{18}\)F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. Advantages of high spatiotemporal resolution of PET imaging and simple tracer production could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging.}, subject = {Nierenfunktionsst{\"o}rung}, language = {en} } @inproceedings{WernerChenHiranoetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Hirano, Mitsuru and Nose, Naoko and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {The Impact of Ageing on [\(^{11}\)C]meta-Hydroxyephedrine Uptake in the Rat Heart}, series = {Journal of Nuclear Medicine}, volume = {59}, booktitle = {Journal of Nuclear Medicine}, number = {Supplement No 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162228}, pages = {100}, year = {2018}, abstract = {No abstract available.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerChenMayaetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Maya, Yoshifumi and Eissler, Christoph and Hirano, Mitsuru and Nose, Naoko and Wakabayashi, Hiroshi and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {The Impact of Ageing on 11C-Hydroxyephedrine Uptake in the Rat Heart}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {11120}, issn = {2281-5872}, doi = {10.1038/s41598-018-29509-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164826}, year = {2018}, abstract = {We aimed to explore the impact of ageing on 11C-Hydroxyephedrine (11C-HED) uptake in the healthy rat heart in a longitudinal setting. To investigate a potential cold mass effect, the influence of specific activity on cardiac 11C-HED uptake was evaluated: 11C-HED was synthesized by N-methylation of (-)-metaraminol as the free base (radiochemical purity >95\%) and a wide range of specific activities (0.2-141.9 GBq/μmol) were prepared. \(^{11}\)C-HED (48.7±9.7MBq, ranged 0.2-60.4μg/kg cold mass) was injected in healthy Wistar Rats. Dynamic 23-frame PET images were obtained over 30 min. Time activity curves were generated for the blood input function and myocardial tissue. Cardiac 11C-HED retention index (\%/min) was calculated as myocardial tissue activity at 20-30 min divided by the integral of the blood activity curves. Additionally, the impact of ageing on myocardial 11CHED uptake was investigated longitudinally by PET studies at different ages of healthy Wistar Rats. A dose-dependent reduction of cardiac 11C-HED uptake was observed: The estimated retention index as a marker of norepinephrine function decreased at a lower specific activity (higher amount of cold mass). This observed high affinity of 11C-HED to the neural norepinephrine transporter triggered a subsequent study: In a longitudinal setting, the 11C-HED retention index decreased with increasing age. An age-related decline of cardiac sympathetic innervation could be demonstrated. The herein observed cold mass effect might increase in succeeding scans and therefore, 11C-HED microPET studies should be planned with extreme caution if one single radiosynthesis is scheduled for multiple animals.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{ChenWernerJavadietal.2015, author = {Chen, Xinyu and Werner, Rudolf A. and Javadi, Mehrbod S. and Maya, Yoshifumi and Decker, Michael and Lapa, Constantin and Herrmann, Ken and Higuchi, Takahiro}, title = {Radionuclide imaging of neurohormonal system of the heart}, series = {Theranostics}, volume = {5}, journal = {Theranostics}, number = {6}, doi = {10.7150/thno.10900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149205}, pages = {545-558}, year = {2015}, abstract = {Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included.}, language = {en} } @article{WernerChenRoweetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Rowe, Steven P. and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {Moving into the Next Era of PET Myocardial Perfusion Imaging - Introduction of Novel \(^{18}\)F-labeled Tracers}, series = {The International Journal of Cardiovascular Imaging}, journal = {The International Journal of Cardiovascular Imaging}, issn = {1569-5794}, doi = {10.1007/s10554-018-1469-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169134}, year = {2018}, abstract = {The heart failure (HF) epidemic continues to rise with coronary artery disease (CAD) as one of its main causes. Novel concepts for risk stratification to guide the referring cardiologist towards revascularization procedures are of significant value. Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) agents has demonstrated high accuracy for the detection of clinically relevant stenoses. With positron emission tomography (PET) becoming more widely available, mainly due to its diagnostic performance in oncology, perfusion imaging with that modality is more practical than in the past and overcomes existing limitations of SPECT MPI. Advantages of PET include more reliable quantification of absolute myocardial blood flow, the routine use of computed tomography for attenuation correction, a higher spatiotemporal resolution and a higher count sensitivity. Current PET radiotracers such as rubidium-82 (half-life, 76 sec), oxygen-15 water (2 min) or nitrogen-13 ammonia (10 min) are labeled with radionuclides with very short half-lives, necessitating that stress imaging is performed under pharmacological vasodilator stress instead of exercise testing. However, with the introduction of novel 18F-labeled MPI PET radiotracers (half-life, 110 min), the intrinsic advantages of PET can be combined with exercise testing. Additional advantages of those radiotracers include, but are not limited to: potentially improved cost-effectiveness due to the use of pre-existing delivery systems and superior imaging qualities, mainly due to the shortest positron range among available PET MPI probes. In the present review, widely used PET MPI radiotracers will be reviewed and potential novel 18F-labeled perfusion radiotracers will be discussed.}, subject = {Positronenemissionstomografie}, language = {en} } @article{WernerEisslerHayakawaetal.2018, author = {Werner, Rudolf A. and Eissler, Christoph and Hayakawa, Nobuyuki and Arias-Loza, Paula and Wakabayashi, Hiroshi and Javadi, Mehrbod S. and Chen, Xinyu and Shinaji, Tetsuya and Lapa, Constantin and Pelzer, Theo and Higuchi, Takahiro}, title = {Left Ventricular Diastolic Dysfunction in a Rat Model of Diabetic Cardiomyopathy using ECG-gated \(^{18}\)F-FDG PET}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {17631}, doi = {10.1038/s41598-018-35986-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171765}, year = {2018}, abstract = {In diabetic cardiomyopathy, left ventricular (LV) diastolic dysfunction is one of the earliest signs of cardiac involvement prior to the definitive development of heart failure (HF). We aimed to explore the LV diastolic function using electrocardiography (ECG)-gated \(^{18}\)F-fluorodeoxyglucose positron emission tomography (\(^{18}\)F-FDG PET) imaging beyond the assessment of cardiac glucose utilization in a diabetic rat model. ECG-gated \(^{18}\)F-FDG PET imaging was performed in a rat model of type 2 diabetes (ZDF fa/fa) and ZL control rats at age of 13 weeks (n=6, respectively). Under hyperinsulinemic-euglycemic clamp to enhance cardiac activity, \(^{18}\)F-FDG was administered and subsequently, list-mode imaging using a dedicated small animal PET system with ECG signal recording was performed. List-mode data were sorted and reconstructed into tomographic images of 16 frames per cardiac cycle. Left ventricular functional parameters (systolic: LV ejection fraction (EF), heart rate (HR) vs. diastolic: peak filling rate (PFR)) were obtained using an automatic ventricular edge detection software. No significant difference in systolic function could be obtained (ZL controls vs. ZDF rats: LVEF, 62.5±4.2 vs. 59.4±4.5\%; HR: 331±35 vs. 309±24 bpm; n.s., respectively). On the contrary, ECG-gated PET imaging showed a mild but significant decrease of PFR in the diabetic rats (ZL controls vs. ZDF rats: 12.1±0.8 vs. 10.2±1 Enddiastolic Volume/sec, P<0.01). Investigating a diabetic rat model, ECG-gated \(^{18}\)F-FDG PET imaging detected LV diastolic dysfunction while systolic function was still preserved. This might open avenues for an early detection of HF onset in high-risk type 2 diabetes before cardiac symptoms become apparent.}, language = {en} } @article{ChenWernerLapaetal.2018, author = {Chen, Xinyu and Werner, Rudolf A. and Lapa, Constantin and Nose, Naoko and Hirano, Mitsuru and Javadi, Mehrbod S. and Robinson, Simon and Higuchi, Takahiro}, title = {Subcellular storage and release mode of the novel \(^{18}\)F-labeled sympathetic nerve PET tracer LMI1195}, series = {EJNMMI Research}, volume = {8}, journal = {EJNMMI Research}, number = {12}, issn = {2191-219X}, doi = {10.1186/s13550-018-0365-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167081}, year = {2018}, abstract = {Background: \(^{18}\)F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine (\(^{18}\)F-LMI1195) is a new class of PET tracer designed for sympathetic nervous imaging of the heart. The favorable image quality with high and specific neural uptake has been previously demonstrated in animals and humans, but intracellular behavior is not yet fully understood. The aim of the present study is to verify whether it is taken up in storage vesicles and released in company with vesicle turnover. Results: Both vesicle-rich (PC12) and vesicle-poor (SK-N-SH) norepinephrine-expressing cell lines were used for in vitro tracer uptake studies. After 2 h of \(^{18}\)F-LMI1195 preloading into both cell lines, effects of stimulants for storage vesicle turnover (high concentration KCl (100 mM) or reserpine treatment) were measured at 10, 20, and 30 min. \(^{131}\)I-meta-iodobenzylguanidine (\(^{131}\)I-MIBG) served as a reference. Both high concentration KCl and reserpine enhanced \(^{18}\)F-LMI1195 washout from PC12 cells, while tracer retention remained stable in the SK-N-SH cells. After 30 min of treatment, 18F-LMI1195 releasing index (percentage of tracer released from cells) from vesicle-rich PC12 cells achieved significant differences compared to cells without treatment condition. In contrast, such effect could not be observed using vesicle-poor SK-N-SH cell lines. Similar tracer kinetics after KCl or reserpine treatment were also observed using 131I-MIBG. In case of KCl exposure, Ca\(^{2+}\)-free buffer with the calcium chelator, ethylenediaminetetracetic acid (EDTA), could suppress the tracer washout from PC12 cells. This finding is consistent with the tracer release being mediated by Ca\(^{2+}\) influx resulting from membrane depolarization. Conclusions: Analogous to \(^{131}\)I-MIBG, the current in vitro tracer uptake study confirmed that \(^{131}\)F-LMI1195 is also stored in vesicles in PC12 cells and released along with vesicle turnover. Understanding the basic kinetics of \(^{18}\)FLMI1195 at a subcellular level is important for the design of clinical imaging protocols and imaging interpretation.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerWakabayashiChenetal.2019, author = {Werner, Rudolf A. and Wakabayashi, Hiroshi and Chen, Xinyu and Hayakawa, Nobuyuki and Lapa, Constantin and Rowe, Steven P. and Javadi, Mehrbod S. and Robinson, Simon and Higuchi, Takahiro}, title = {Ventricular distribution pattern of the novel sympathetic nerve PET radiotracer \(^{18}\)F-LMI1195 in Rabbit Hearts}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-53596-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202707}, pages = {17026}, year = {2019}, abstract = {We aimed to determine a detailed regional ventricular distribution pattern of the novel cardiac nerve PET radiotracer \(^{18}\)F-LMI1195 in healthy rabbits. Ex-vivo high resolution autoradiographic imaging was conducted to identify accurate ventricular distribution of \(^{18}\)F-LMI1195. In healthy rabbits, \(^{18}\)F-LMI1195 was administered followed by the reference perfusion marker \(^{201}\)Tl for a dual-radiotracer analysis. After 20 min of \(^{18}\)F-LMI1195 distribution time, the rabbits were euthanized, the hearts were extracted, frozen, and cut into 20-μm short axis slices. Subsequently, the short axis sections were exposed to a phosphor imaging plate to determine \(^{18}\)F-LMI1195 distribution (exposure for 3 h). After complete \(^{18}\)F decay, sections were re-exposed to determine 201Tl distribution (exposure for 7 days). For quantitative analysis, segmental regions of Interest (ROIs) were divided into four left ventricular (LV) and a right ventricular (RV) segment on mid-ventricular short axis sections. Subendocardial, mid-portion, and subepicardial ROIs were placed on the LV lateral wall. \(^{18}\)F-LMI1195 distribution was almost homogeneous throughout the LV wall without any significant differences in all four LV ROIs (anterior, posterior, septal and lateral wall, 99 ± 2, 94 ± 5, 94 ± 4 and 97 ± 3\%LV, respectively, n.s.). Subepicardial \(^{201}\)Tl uptake was significantly lower compared to the subendocardial portion (subendocardial, mid-portion, and subepicardial activity: 90 ± 3, 96 ± 2 and *80 ± 5\%LV, respectively, *p < 0.01 vs. mid-portion). This was in contradistinction to the transmural wall profile of \(^{18}\)F-LMI1195 (90 ± 4, 96 ± 5 and 84 ± 4\%LV, n.s.). A slight but significant discrepant transmural radiotracer distribution pattern of \(^{201}\)Tl in comparison to \(^{18}\)F-LMI1195 may be a reflection of physiological sympathetic innervation and perfusion in rabbit hearts.}, language = {en} } @article{WernerChenHiranoetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Hirano, Mitsuru and Rowe, Steven P. and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {SPECT vs. PET in Cardiac Innervation Imaging: Clash of the Titans}, series = {Clinical and Translational Imaging}, journal = {Clinical and Translational Imaging}, issn = {2281-5872}, doi = {10.1007/s40336-018-0289-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163628}, year = {2018}, abstract = {Purpose: We aim to provide an overview of the conventional single photon emission computed tomography (SPECT) and emerging positron emission tomography (PET) catecholamine analogue tracers for assessing myocardial nerve integrity, in particular focusing on \(^{18}\)F-labeled tracers. Results: Increasingly, the cardiac sympathetic nervous system (SNS) is being studied by non-invasive molecular imaging approaches. Forming the backbone of myocardial SNS imaging, the norepinephrine (NE) transporter at the sympathetic nerve terminal plays a crucial role for visualizing denervated myocardium: in particular, the single-photon-emitting NE analogue \(^{123}\)I-meta-Iodobenzylguanidine (\(^{123}\)I-mIBG) has demonstrated favorable results in the identification of patients at a high risk for cardiac death. However, cardiac neuronal PET agents offer several advantages inlcuding improved spatio-temporal resolution and intrinsic quantifiability. Compared to their \(^{11}\)C-labeled counterparts with a short half-life (20.4 min), novel \(^{18}\)F-labeled PET imaging agents to assess myocardial nerve integrity have the potential to revolutionize the field of SNS molecular imaging: The longer half-life of \(^{18}\)F (109.8 min) allows for more flexibility in the study design and delivery from central cyclotron facilities to smaller hospitals may lead to further cost reduction. A great deal of progress has been made by the first in-human studies of such \(^{18}\)F-labeled SNS imaging agents. Moreover, dedicated animal platforms open avenues for further insights into the handling of radiolabeled catecholamine analogues at the sympathetic nerve terminal. Conclusions: \(^{18}\)F-labeled imaging agents demonstrate key properties for mapping cardiac sympathetic nerve integrity and might outperform current SPECT-based or \(^{11}\)C-labeled tracers in the long run.}, subject = {Positronen-Emissions-Tomografie}, language = {en} }