@article{WernerSchmidHiguchietal.2018, author = {Werner, Rudolf and Schmid, Jan-Stefan and Higuchi, Takahiro and Javadi, Mehrbod S. and Rowe, Steven P. and M{\"a}rkl, Bruno and Aulmann, Christoph and Fassnacht, Martin and Kroiß, Matthias and Reiners, Christoph and Buck, Andreas and Kreissl, Michael and Lapa, Constantin}, title = {Predictive value of \(^{18}\)F-FDG PET in patients with advanced medullary thyroid carcinoma treated with vandetanib}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.199778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161256}, year = {2018}, abstract = {Introduction: Therapeutic options in advanced medullary thyroid carcinoma (MTC) have markedly improved since the introduction of tyrosine kinase inhibitors (TKI). We aimed to assess the role of metabolic imaging using 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography/computed tomography (PET/CT) shortly before and 3 months after initiation of TKI treatment. Methods: Eighteen patients with advanced and progressive MTC scheduled for vandetanib treatment underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after TKI treatment initiation. During follow-up, CT scans were performed every 3 months and analyzed according to Response Evaluation Criteria In Solid Tumors (RECIST). The predictive value for estimating progression-free (PFS) and overall survival (OS) was examined by investigating \(^{18}\)F-FDG mean/maximum standardized uptake values (SUVmean/max) of the metabolically most active lesion as well as by analyzing clinical parameters (tumor marker doubling times {calcitonin, carcinoembryonic antigen (CEA)}, prior therapies, RET (rearranged during transfection) mutational status, and disease type). Results: Within a median follow-up of 5.2 years, 9 patients experienced disease progression after a median time interval of 2.1y whereas the remainder had ongoing disease control (n=5 partial response and n=4 stable disease). Eight of the 9 patients with progressive disease died from MTC after a median of 3.5y after TKI initiation. Pre-therapeutic SUVmean >4.0 predicted a significantly shorter PFS (PFS: 1.9y vs. 5.2y; p=0.04). Furthermore, sustained high 18F-FDG uptake at 3 months with a SUVmean>2.8 tended to portend an unfavorable prognosis with a PFS of 1.9y (vs. 3.5y; p=0.3). Prolonged CEA doubling times were significantly correlated with longer PFS (r=0.7) and OS (r=0.76, p<0.01, respectively). None of the other clinical parameters had prognostic significance. Conclusions: Pre-therapeutic \(^{18}\)F-FDG PET/CT holds prognostic information in patients with advanced MTC scheduled for treatment with the TKI vandetanib. Low tumor metabolism of SUVmean < 4.0 prior to treatment predicts longer progression-free survival.}, subject = {Medull{\"a}rer Schilddr{\"u}senkrebs}, language = {en} } @article{WernerWakabyashiChenetal.2018, author = {Werner, Rudolf and Wakabyashi, Hiroshi and Chen, Xinyu and Hirano, Mitsuru and Shinaji, Tetsuya and Lapa, Constantin and Rowe, Steven and Javadi, Mehrbod and Higuchi, Takahiro}, title = {Functional renal imaging with \(^{18}\)F-FDS PET in rat models of renal disorders}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.203828}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161279}, year = {2018}, abstract = {Background: Precise regional quantitative assessment of renal function is limited with conventional \(^{99m}\)Tc-labeled renal radiotracers. A recent study reported that the positron emission tomography (PET) radiotracer 2-deoxy-2-(\(^{18}\)F-fluorosorbitol (\(^{18}\)F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, (\(^{18}\)F-FDS is available via simple reduction from routinely used 2-deoxy-2-(\(^{18}\)F-fluoro-D-glucose ((\(^{18}\)F-FDG). We aimed to further investigate the potential of (\(^{18}\)F-FDS PET as a functional renal imaging agent using rat models of kidney diseases. Methods: Two different rat models of renal impairment were investigated: Glycerol induced acute renal failure (ARF) by intramuscular administration of glycerol in hind legs and unilateral ureteral obstruction (UUO) by ligation of the left ureter. 24h after these treatments, dynamic 30 min 18F-FDS PET data were acquired using a dedicated small animal PET system. Urine 18F-FDS radioactivity 30 min after radiotracer injection was measured together with co-injected \(^{99m}\)Tc-diethylenetriaminepentaacetic acid (\(^{99m}\)Tc-DTPA) urine activity. Results: Dynamic PET imaging demonstrated rapid (\(^{18}\)F-FDS accumulation in the renal cortex and rapid radiotracer excretion via kidneys in control healthy rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in ARF rats and UUO-treated kidneys. Measured urine radiotracer concentrations of (\(^{18}\)F-FDS and \(^{99m}\)Tc-DTPA were well correlated (R=0.84, P<0.05). Conclusions: (\(^{18}\)F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. Advantages of high spatiotemporal resolution of PET imaging and simple tracer production could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging.}, subject = {Nierenfunktionsst{\"o}rung}, language = {en} } @article{WernerKobayashiJavadietal.2018, author = {Werner, Rudolf A. and Kobayashi, Ryohei and Javadi, Mehrbod Som and K{\"o}ck, Zoe and Wakabayashi, Hiroshi and Unterecker, Stefan and Nakajima, Kenichi and Lapa, Constantin and Menke, Andreas and Higuchi, Takahiro}, title = {Impact of Novel Antidepressants on Cardiac Metaiodobenzylguanidine (mIBG) Uptake: Experimental Studies in SK-N-SH Cells and Healthy Rabbits}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.206045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161280}, year = {2018}, abstract = {Background: \(^{123}\)I-metaiodobenzylguanidine (mIBG) provides independent prognostic value for risk stratification among heart failure patients, but the use of concomitant medication should not impact its quantitative information. We aimed to evaluate the four most-prescribed antidepressants currently used as a first‑line treatment for patients with major depressive disorder (MDD) and their potential on altering mIBG imaging results. Methods: The inhibition effect of four different types of antidepressants (desipramine, escitalopram, venlafaxine and bupropion) for MDD treatment on \(^{131}\)I-mIBG uptake was assessed by in-vitro cell uptake assays using human neuroblastoma SK-N-SH cells. The half maximal inhibitory concentration (IC50) of tracer uptake was determined from dose-response curves. To evaluate the effects of IV pretreatment with desipramine (1.5 mg/kg) and escitalopram (2.5, 15 mg/kg) on mIBG cardiac uptake, in-vivo planar 123I-mIBG scans in healthy New Zealand White Rabbits were conducted. Results: The IC50 values of desipramine, escitalopram, venlafaxine and bupropion on \(^{131}\)I-mIBG cellular uptake were 11.9 nM, 7.5 μM, 4.92 μM, and 12.9 μM, respectively. At the maximum serum concentration (Cmax, as derived by previous clinical trials), the inhibition rates of 131I-mIBG uptake were 90.6 \% for desipramine, 25.5 \% for venlafaxine, 11.7 \% for bupropion and 0.72 \% for escitalopram. A low inhibition rate for escitalopram in the cell uptake study triggered investigation of an in-vivo rabbit model: with dosage considerably higher than clinical practice, the non-inhibitory effect of escitalopram was confirmed. Furthermore, pretreatment with desipramine led to a marked reduction of cardiac 123I-mIBG uptake. Conclusions: In the present in-vitro binding assay and in-vivo rabbit study, the selective-serotonin reuptake inhibitor escitalopram had no major impact on neuronal cardiac mIBG uptake within therapeutic dose ranges, while other types of first-line antidepressants for MDD treatment led to a significant decrease. These preliminary results warrant further confirmatory clinical trials regarding the reliability of cardiac mIBG imaging, in particular, if the patient's neuropsychiatric status would not tolerate withdrawal of a potentially norepinephrine interfering antidepressant.}, subject = {Antidepressants}, language = {en} } @article{WernerSolnesJavadietal.2018, author = {Werner, Rudolf and Solnes, Lilja and Javadi, Mehrbod and Weich, Alexander and Gorin, Michael and Pienta, Kenneth and Higuchi, Takahiro and Buck, Andreas and Pomper, Martin and Rowe, Steven and Lapa, Constantin}, title = {SSTR-RADS Version 1.0 as a Reporting System for SSTR-PET Imaging and Selection of Potential PRRT Candidates: A Proposed Standardization Framework}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.206631}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161298}, year = {2018}, abstract = {Reliable standards and criteria for somatostatin receptor (SSTR) positron emission tomography (PET) are still lacking. We herein propose a structured reporting system on a 5-point scale for SSTR-PET imaging, titled SSTR-RADS version 1.0, which might serve as a standardized assessment for both diagnosis and treatment planning in neuroendocrine tumors (NET). SSTR-RADS could guide the imaging specialist in interpreting SSTR-PET scans, facilitate communication with the referring clinician so that appropriate work-up for equivocal findings is pursued, and serve as a reliable tool for patient selection for planned Peptide Receptor Radionuclide Therapy.}, subject = {Standardisierung}, language = {en} } @inproceedings{WernerMarcusSheikhbahaeietal.2018, author = {Werner, Rudolf A. and Marcus, Charles and Sheikhbahaei, Sara and Higuchi, Takahiro and Solnes, Lilja B. and Rowe, Steven P. and Buck, Andreas K. and Lapa, Constantin and Javadi, Mehrbod S.}, title = {Diagnostic Accuracy of Visual Assessment of an Initial DaT-Scan in Comparison to a Fully Automatic Semiquantitative Method}, series = {Journal of Nuclear Medicine}, volume = {59}, booktitle = {Journal of Nuclear Medicine}, number = {Supplement No. 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162208}, pages = {626}, year = {2018}, abstract = {No abstract available.}, subject = {Parkinson-Krankheit}, language = {en} } @inproceedings{WernerMarcusSheikhbahaeietal.2018, author = {Werner, Rudolf A. and Marcus, Charles and Sheikhbahaei, Sara and Higuchi, Takahiro and Solnes, Lilja B. and Rowe, Steven P. and Buck, Andreas K. and Lapa, Constantin and Javadi, Mehrbod S.}, title = {The Impact of Ageing on Dopamine Transporter Imaging}, series = {Journal of Nuclear Medicine}, volume = {59}, booktitle = {Journal of Nuclear Medicine}, number = {Supplement No 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162213}, pages = {1646}, year = {2018}, abstract = {No abstract available.}, subject = {Parkinson-Krankheit}, language = {en} } @inproceedings{WernerChenHiranoetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Hirano, Mitsuru and Nose, Naoko and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {The Impact of Ageing on [\(^{11}\)C]meta-Hydroxyephedrine Uptake in the Rat Heart}, series = {Journal of Nuclear Medicine}, volume = {59}, booktitle = {Journal of Nuclear Medicine}, number = {Supplement No 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162228}, pages = {100}, year = {2018}, abstract = {No abstract available.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @unpublished{WernerIlhanLehneretal.2018, author = {Werner, Rudolf A. and Ilhan, Harun and Lehner, Sebastian and Papp, L{\´a}szl{\´o} and Zs{\´o}t{\´e}r, Norbert and Schatka, Imke and Muegge, Dirk O. and Javadi, Mehrbod S. and Higuchi, Takahiro and Buck, Andreas K. and Bartenstein, Peter and Bengel, Frank and Essler, Markus and Lapa, Constantin and Bundschuh, Ralph A.}, title = {Pre-therapy Somatostatin-Receptor-Based Heterogeneity Predicts Overall Survival in Pancreatic Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy}, series = {Molecular Imaging and Biology}, journal = {Molecular Imaging and Biology}, issn = {1536-1632}, doi = {https://doi.org/10.1007/s11307-018-1252-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164624}, year = {2018}, abstract = {Purpose: Early identification of aggressive disease could improve decision-support in pancreatic neuroendocrine tumor (pNET) patients prior to peptide receptor radionuclide therapy (PRRT). The prognostic value of intratumoral textural features (TF) determined by baseline somatostatin receptor (SSTR)-PET before PRRT was analyzed. Procedures: 31 patients with G1/G2 pNET were enrolled (G2, n=23/31). Prior to PRRT with [\(^{177}\)Lu]DOTATATE (mean, 3.6 cycles), baseline SSTR-PET/CT was performed. By segmentation of 162 (median per patient, 5) metastases, intratumoral TF were computed. The impact of conventional PET parameters (SUV\(_{mean/max}\)), imaging-based TF as well as clinical parameters (Ki67, CgA) for prediction of both progression-free (PFS) and overall survival (OS) after PRRT was evaluated. Results: Within a median follow-up of 3.7y, tumor progression was detected in 21 patients (median, 1.5y) and 13/31 deceased (median, 1.9y). In ROC analysis, the TF Entropy, reflecting derangement on a voxel-by-voxel level, demonstrated predictive capability for OS (cutoff=6.7, AUC=0.71, p=0.02). Of note, increasing Entropy could predict a longer survival (>6.7, OS=2.5y, 17/31), whereas less voxel-based derangement portended inferior outcome (<6.7, OS=1.9y, 14/31). These findings were supported in a G2 subanalysis (>6.9, OS=2.8y, 9/23 vs. <6.9, OS=1.9y, 14/23). Kaplan-Meier analysis revealed a significant distinction between high- and low-risk groups using Entropy (n=31, p<0.05). For those patients below the ROC-derived threshold, the relative risk of death after PRRT was 2.73 (n=31, p=0.04). Ki67 was negatively associated with PFS (p=0.002); however, SUVmean/max failed in prognostication (n.s.). Conclusions: In contrast to conventional PET parameters, assessment of intratumoral heterogeneity demonstrated superior prognostic performance in pNET patients undergoing PRRT. This novel PET-based strategy of outcome prediction prior to PRRT might be useful for patient risk stratification.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @inproceedings{WernerHiguchiMueggeetal.2017, author = {Werner, Rudolf and Higuchi, Takahiro and Muegge, Dirk and Javadi, Mehrbod S. and M{\"a}rkl, Bruno and Aulmann, Christoph and Buck, Andreas K. and Fassnacht, Martin and Lapa, Constantin and Kreissl, Michael C.}, title = {Predictive value of FDG-PET in patients with advanced medullary thyroid cancer undergoing vandetanib treatment}, series = {Journal of Nuclear Medicine}, volume = {58}, booktitle = {Journal of Nuclear Medicine}, number = {no. supplement 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161147}, pages = {169}, year = {2017}, abstract = {Introduction: The prognosis of medullary thyroid carcinoma (MTC) is poor using common chemotherapeutic approaches. However, during the last years encouraging results of recently introduced tyrosine kinase inhibitors (TKI) such as vandetanib have been published. In this study we aimed to correlate the results of \(^{18}\)F-fluorodeoxyglucose ([\(^{18}\)F]FDG) positron emission tomography (PET) imaging with treatment outcome. Methods: Eighteen patients after thyroidectomy with recurrent/advanced MTC lesions receiving vandetanib (300 mg orally/day) could be analysed. A baseline \(^{18}\)F-FDG PET prior to and a follow-up \(^{18}\)F-FDG PET 3 months after TKI initiation were performed. During follow-up, tumor progression was assessed every 3 months including computed tomography according to RECIST. Progression-free survival (PFS) was correlated with the maximum standardized uptake value of \(^{18}\)F-FDG in lymph nodes (SUV(LN)max) or visceral metastases (SUV(MTS)max) as well as with clinical parameters using ROC analysis. Results: Within median 3.6 years of follow-up, 9 patients showed disease progression at median 8.5 months after TKI initiation. An elevated glucose consumption assessed by baseline \(^{18}\)F-FDG PET (SUV(LN)max > 7.25) could predict a shorter PFS (2 y) with an accuracy of 76.5\% (SUV(LN)max <7.25, 4.3 y; p=0.03). Accordingly, preserved tumor metabolism in the follow-up PET (SUV(MTS)max >2.7) also demonstrated an unfavorable prognosis (accuracy, 85.7\%). On the other hand, none of the clinical parameters reached significance in response prediction. Conclusions: In patients with advanced and progressive MTC, tumors with higher metabolic activity at baseline are more aggressive and more prone to progression as reflected by a shorter PFS; they should be monitored more closely. Preserved glucose consumption 3 months after treatment initiation was also related to poorer prognosis.}, language = {en} } @unpublished{WernerBundschuhBundschuhetal.2019, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Bundschuh, Lena and Fanti, Stefano and Javadi, Mehrbod S. and Higuchi, Takahiro and Weich, A. and Pienta, Kenneth J. and Buck, Andreas K. and Pomper, Martin G. and Gorin, Michael A. and Herrmann, Ken and Lapa, Constantin and Rowe, Steven P.}, title = {Novel Structured Reporting Systems for Theranostic Radiotracers}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.118.223537}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174629}, year = {2019}, abstract = {Standardized reporting is more and more routinely implemented in clinical practice and such structured reports have a major impact on a large variety of medical fields, e.g. laboratory medicine, pathology, and, recently, radiology. Notably, the field of nuclear medicine is constantly evolving, as novel radiotracers for numerous clinical applications are developed. Thus, framework systems for standardized reporting in this field may a) increase clinical acceptance of new radiotracers, b) allow for inter- and intra-center comparisons for quality assurance, and c) may be used in (global) multi-center studies to ensure comparable results and enable efficient data abstraction. In the last two years, several standardized framework systems for positron emission tomography (PET) radiotracers with potential theranostic applications have been proposed. These include systems for prostate-specific membrane antigen (PSMA)-targeted PET agents for the diagnosis and treatment of prostate cancer (PCa) and somatostatin receptor (SSTR)-targeted PET agents for the diagnosis and treatment of neuroendocrine neoplasias. In the present review, those standardized framework systems for PSMA- and SSTR-targeted PET will be briefly introduced followed by an overview of their advantages and limitations. In addition, potential applications will be defined, approaches to validate such concepts will be proposed, and future perspectives will be discussed.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @unpublished{WernerBundschuhBundschuhetal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Bundschuh, Lena and Javadi, Mehrbod S. and Leal, Jeffrey P. and Higuchi, Takahiro and Pienta, Kenneth J. and Buck, Andreas K. and Pomper, Martin G. and Gorin, Michael A. and Lapa, Constantin and Rowe, Steven P.}, title = {Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on \(^{18}\)F-DCFPyL PET/CT Imaging}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.118.217588}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167788}, year = {2018}, abstract = {Objectives: Recently, the standardized reporting and data system for prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) imaging studies, termed PSMA-RADS version 1.0, was introduced. We aimed to determine the interobserver agreement for applying PSMA-RADS to imaging interpretation of 18F-DCFPyL PET examinations in a prospective setting mimicking the typical clinical work-flow at a prostate cancer referral center. Methods: Four readers (two experienced readers (ER, > 3 years of PSMA-targeted PET interpretation experience) and two inexperienced readers (IR, < 1 year of experience)), who had all read the initial publication on PSMA-RADS 1.0, assessed 50 18F-DCFPyL PET/computed tomography (CT) studies independently. Per scan, a maximum of 5 target lesions were selected by the observers and a PSMA-RADS score for every target lesion was recorded. No specific pre-existing conditions were placed on the selection of the target lesions, although PSMA-RADS 1.0 suggests that readers focus on the most highly avid or largest lesions. An overall scan impression based on PSMA-RADS was indicated and interobserver agreement rates on a target lesion-based, on an organ-based, and on an overall PSMA-RADS score-based level were computed. Results: The number of target lesions identified by each observer were as follows: ER 1, 123; ER 2, 134; IR 1, 123; and IR 2, 120. Among those selected target lesions, 125 were chosen by at least two individual observers (all four readers selected the same target lesion in 58/125 (46.4\%) instances, three readers in 40/125 (32\%) and two observers in 27/125 (21.6\%) instances). The interobserver agreement for PSMA-RADS scoring among identical target lesions was good (intraclass correlation coefficient (ICC) for four, three and two identical target lesions, ≥0.60, respectively). For lymph nodes, an excellent interobserver agreement was derived (ICC=0.79). The interobserver agreement for an overall scan impression based on PSMA-RADS was also excellent (ICC=0.84), with a significant difference for ER (ICC=0.97) vs. IR (ICC=0.74, P=0.005). Conclusions: PSMA-RADS demonstrates a high concordance rate in this study, even among readers with different levels of experience. This suggests that PSMA-RADS can be effectively used for communication with clinicians and can be implemented in the collection of data for large prospective trials.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerWakabayashiBaueretal.2018, author = {Werner, Rudolf and Wakabayashi, Hiroshi and Bauer, Jochen and Sch{\"u}tz, Claudia and Zechmeister, Christina and Hayakawa, Nobuyuki and Javadi, Mehrbod S. and Lapa, Constantin and Jahns, Roland and Erg{\"u}n, S{\"u}leyman and Jahns, Valerie and Higuchi, Takahiro}, title = {Longitudinal \(^{18}\)F-FDG PET imaging in a Rat Model of Autoimmune Myocarditis}, series = {European Heart Journal Cardiovascular Imaging}, journal = {European Heart Journal Cardiovascular Imaging}, issn = {2047-2404}, doi = {10.1093/ehjci/jey119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165601}, pages = {1-8}, year = {2018}, abstract = {Aims: Although mortality rate is very high, diagnosis of acute myocarditis remains challenging with conventional tests. We aimed to elucidate the potential role of longitudinal 2-Deoxy-2-\(^{18}\)F-fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography (PET) inflammation monitoring in a rat model of experimental autoimmune myocarditis. Methods and results: Autoimmune myocarditis was induced in Lewis rats by immunizing with porcine cardiac myosin emulsified in complete Freund's adjuvant. Time course of disease was assessed by longitudinal \(^{18}\)F-FDG PET imaging. A correlative analysis between in- and ex vivo \(^{18}\)F-FDG signalling and macrophage infiltration using CD68 staining was conducted. Finally, immunohistochemistry analysis of the cell-adhesion markers CD34 and CD44 was performed at different disease stages determined by longitudinal \(^{18}\)F-FDG PET imaging. After immunization, myocarditis rats revealed a temporal increase in 18F-FDG uptake (peaked at week 3), which was followed by a rapid decline thereafter. Localization of CD68 positive cells was well correlated with in vivo \(^{18}\)F-FDG PET signalling (R\(^2\) = 0.92) as well as with ex vivo 18F-FDG autoradiography (R\(^2\) = 0.9, P < 0.001, respectively). CD44 positivity was primarily observed at tissue samples obtained at acute phase (i.e. at peak 18F-FDG uptake), while CD34-positive staining areas were predominantly identified in samples harvested at both sub-acute and chronic phases (i.e. at \(^{18}\)F-FDG decrease). Conclusion: \(^{18}\)F-FDG PET imaging can provide non-invasive serial monitoring of cardiac inflammation in a rat model of acute myocarditis.}, subject = {Myokarditis}, language = {en} } @article{WernerChenMayaetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Maya, Yoshifumi and Eissler, Christoph and Hirano, Mitsuru and Nose, Naoko and Wakabayashi, Hiroshi and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {The Impact of Ageing on 11C-Hydroxyephedrine Uptake in the Rat Heart}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {11120}, issn = {2281-5872}, doi = {10.1038/s41598-018-29509-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164826}, year = {2018}, abstract = {We aimed to explore the impact of ageing on 11C-Hydroxyephedrine (11C-HED) uptake in the healthy rat heart in a longitudinal setting. To investigate a potential cold mass effect, the influence of specific activity on cardiac 11C-HED uptake was evaluated: 11C-HED was synthesized by N-methylation of (-)-metaraminol as the free base (radiochemical purity >95\%) and a wide range of specific activities (0.2-141.9 GBq/μmol) were prepared. \(^{11}\)C-HED (48.7±9.7MBq, ranged 0.2-60.4μg/kg cold mass) was injected in healthy Wistar Rats. Dynamic 23-frame PET images were obtained over 30 min. Time activity curves were generated for the blood input function and myocardial tissue. Cardiac 11C-HED retention index (\%/min) was calculated as myocardial tissue activity at 20-30 min divided by the integral of the blood activity curves. Additionally, the impact of ageing on myocardial 11CHED uptake was investigated longitudinally by PET studies at different ages of healthy Wistar Rats. A dose-dependent reduction of cardiac 11C-HED uptake was observed: The estimated retention index as a marker of norepinephrine function decreased at a lower specific activity (higher amount of cold mass). This observed high affinity of 11C-HED to the neural norepinephrine transporter triggered a subsequent study: In a longitudinal setting, the 11C-HED retention index decreased with increasing age. An age-related decline of cardiac sympathetic innervation could be demonstrated. The herein observed cold mass effect might increase in succeeding scans and therefore, 11C-HED microPET studies should be planned with extreme caution if one single radiosynthesis is scheduled for multiple animals.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerSheikhbahaeiJonesetal.2017, author = {Werner, Rudolf A. and Sheikhbahaei, Sara and Jones, Krystyna M. and Javadi, Mehrbod S. and Solnes, Lilja B. and Ross, Ashley E. and Allaf, Mohamad E. and Pienta, Kenneth J. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro and Pomper, Martin G. and Gorin, Micheal A. and Rowe, Steven P.}, title = {Patterns of uptake of prostate-specific membrane antigen (PSMA)-targeted \(^{18}\)F-DCFPyL in peripheral ganglia}, series = {Annals of Nuclear Medicine}, volume = {31}, journal = {Annals of Nuclear Medicine}, number = {9}, issn = {0914-7187}, doi = {10.1007/s12149-017-1201-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166971}, pages = {696-702}, year = {2017}, abstract = {Objective: Radiotracers targeting prostate-specific membrane antigen (PSMA) have increasingly been recognized as showing uptake in a number of normal structures, anatomic variants, and non-prostate-cancer pathologies. We aimed to explore the frequency and degree of uptake in peripheral ganglia in patients undergoing PET with the PSMA-targeted agent \(^{18}\)F-DCFPyL. Methods: A total of 98 patients who underwent \(^{18}\)F-DCFPyL PET/CT imaging were retrospectively analyzed. This included 76 men with prostate cancer (PCa) and 22 patients with renal cell carcinoma (RCC; 13 men, 9 women). Scans were evaluated for uptake in the cervical, stellate, celiac, lumbar and sacral ganglia. Maximum standardized uptake value corrected to body weight (SUV\(_{max}\)), and maximum standardized uptake value corrected to lean body mass (SUL\(_{max}\)) were recorded for all ganglia with visible uptake above background. Ganglia-to-background ratios were calculated by dividing the SUV\(_{max}\) and SUL\(_{max}\) values by the mean uptake in the ascending aorta (Aortamean) and the right gluteus muscle (Gluteusmean). Results: Overall, 95 of 98 (96.9\%) patients demonstrated uptake in at least one of the evaluated peripheral ganglia. With regard to the PCa cohort, the most frequent sites of radiotracer accumulation were lumbar ganglia (55/76, 72.4\%), followed by the cervical ganglia (51/76, 67.1\%). Bilateral uptake was found in the majority of cases [lumbar 44/55 (80\%) and cervical 30/51 (58.8\%)]. Additionally, discernible radiotracer uptake was recorded in 50/76 (65.8\%) of the analyzed stellate ganglia and in 45/76 (59.2\%) of the celiac ganglia, whereas only 5/76 (6.6\%) of the sacral ganglia demonstrated \(^{18}\)F-DCFPyL accumulation. Similar findings were observed for patients with RCC, with the most frequent locations of radiotracer uptake in both the lumbar (20/22, 90.9\%) and cervical ganglia (19/ 22, 86.4\%). No laterality preference was found in mean PSMA-ligand uptake for either the PCa or RCC cohorts. Conclusion: As PSMA-targeted agents become more widely disseminated, the patterns of uptake in structures that are not directly relevant to patients' cancers must be understood. This is the first systematic evaluation of the uptake of \(^{18}\)F-DCFPyL in ganglia demonstrating a general trend with a descending frequency of radiotracer accumulation in lumbar, cervical, stellate, celiac, and sacral ganglia. The underlying biology that leads to variability of PSMA-targeted radiotracers in peripheral ganglia is not currently understood, but may provide opportunities for future research.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @unpublished{WernerAndreeJavadietal.2018, author = {Werner, Rudolf A. and Andree, Christian and Javadi, Mehrbod S. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro and Pomper, Martin G. and Gorin, Michael A. and Rowe, Steven P. and Pienta, Kenneth J.}, title = {A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging}, series = {Urology - The Gold Journal}, journal = {Urology - The Gold Journal}, issn = {0090-4295}, doi = {10.1016/j.urology.2018.03.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161103}, year = {2018}, abstract = {No abstract available.}, subject = {Virchow Node}, language = {en} } @article{WernerAndreeJavadietal.2018, author = {Werner, Rudolf A. and Andree, Christian and Javadi, Mehrbod S. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro and Pomper, Martin G. and Gorin, Michael A. and Rowe, Steven P. and Pienta, Kenneth J.}, title = {A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging}, series = {Urology - The Gold Journal}, volume = {117}, journal = {Urology - The Gold Journal}, issn = {0090-4295}, doi = {10.1016/j.urology.2018.03.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164632}, pages = {18-21}, year = {2018}, abstract = {No abstract available.}, language = {en} } @article{ChenWernerJavadietal.2015, author = {Chen, Xinyu and Werner, Rudolf A. and Javadi, Mehrbod S. and Maya, Yoshifumi and Decker, Michael and Lapa, Constantin and Herrmann, Ken and Higuchi, Takahiro}, title = {Radionuclide imaging of neurohormonal system of the heart}, series = {Theranostics}, volume = {5}, journal = {Theranostics}, number = {6}, doi = {10.7150/thno.10900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149205}, pages = {545-558}, year = {2015}, abstract = {Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included.}, language = {en} } @article{WernerChenRoweetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Rowe, Steven P. and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {Moving into the Next Era of PET Myocardial Perfusion Imaging - Introduction of Novel \(^{18}\)F-labeled Tracers}, series = {The International Journal of Cardiovascular Imaging}, journal = {The International Journal of Cardiovascular Imaging}, issn = {1569-5794}, doi = {10.1007/s10554-018-1469-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169134}, year = {2018}, abstract = {The heart failure (HF) epidemic continues to rise with coronary artery disease (CAD) as one of its main causes. Novel concepts for risk stratification to guide the referring cardiologist towards revascularization procedures are of significant value. Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) agents has demonstrated high accuracy for the detection of clinically relevant stenoses. With positron emission tomography (PET) becoming more widely available, mainly due to its diagnostic performance in oncology, perfusion imaging with that modality is more practical than in the past and overcomes existing limitations of SPECT MPI. Advantages of PET include more reliable quantification of absolute myocardial blood flow, the routine use of computed tomography for attenuation correction, a higher spatiotemporal resolution and a higher count sensitivity. Current PET radiotracers such as rubidium-82 (half-life, 76 sec), oxygen-15 water (2 min) or nitrogen-13 ammonia (10 min) are labeled with radionuclides with very short half-lives, necessitating that stress imaging is performed under pharmacological vasodilator stress instead of exercise testing. However, with the introduction of novel 18F-labeled MPI PET radiotracers (half-life, 110 min), the intrinsic advantages of PET can be combined with exercise testing. Additional advantages of those radiotracers include, but are not limited to: potentially improved cost-effectiveness due to the use of pre-existing delivery systems and superior imaging qualities, mainly due to the shortest positron range among available PET MPI probes. In the present review, widely used PET MPI radiotracers will be reviewed and potential novel 18F-labeled perfusion radiotracers will be discussed.}, subject = {Positronenemissionstomografie}, language = {en} } @article{WernerIlhanLehneretal.2018, author = {Werner, Rudolf A. and Ilhan, Harun and Lehner, Sebastian and Papp, L{\´a}szl{\´o} and Zs{\´o}t{\´e}r, Norbert and Schatka, Imke and Muegge, Dirk O. and Javadi, Mehrbod S. and Higuchi, Takahiro and Buck, Andreas K. and Bartenstein, Peter and Bengel, Frank and Essler, Markus and Lapa, Constantin and Bundschuh, Ralph A.}, title = {Pre-therapy Somatostatin-Receptor-Based Heterogeneity Predicts Overall Survival in Pancreatic Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy}, series = {Molecular Imaging and Biology}, journal = {Molecular Imaging and Biology}, issn = {1536-1632}, doi = {10.1007/s11307-018-1252-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167168}, year = {2018}, abstract = {Purpose: Early identification of aggressive disease could improve decision-support in pancreatic neuroendocrine tumor (pNET) patients prior to peptide receptor radionuclide therapy (PRRT). The prognostic value of intratumoral textural features (TF) determined by baseline somatostatin receptor (SSTR)-PET before PRRT was analyzed. Procedures: 31 patients with G1/G2 pNET were enrolled (G2, n=23/31). Prior to PRRT with [\(^{177}\)Lu]DOTATATE (mean, 3.6 cycles), baseline SSTR-PET/CT was performed. By segmentation of 162 (median per patient, 5) metastases, intratumoral TF were computed. The impact of conventional PET parameters (SUV\(_{mean/max}\)), imaging-based TF as well as clinical parameters (Ki67, CgA) for prediction of both progression-free (PFS) and overall survival (OS) after PRRT was evaluated. Results: Within a median follow-up of 3.7y, tumor progression was detected in 21 patients (median, 1.5y) and 13/31 deceased (median, 1.9y). In ROC analysis, the TF Entropy, reflecting derangement on a voxel-by-voxel level, demonstrated predictive capability for OS (cutoff=6.7, AUC=0.71, p=0.02). Of note, increasing Entropy could predict a longer survival (>6.7, OS=2.5y, 17/31), whereas less voxel-based derangement portended inferior outcome (<6.7, OS=1.9y, 14/31). These findings were supported in a G2 subanalysis (>6.9, OS=2.8y, 9/23 vs. <6.9, OS=1.9y, 14/23). Kaplan-Meier analysis revealed a significant distinction between high- and low-risk groups using Entropy (n=31, p<0.05). For those patients below the ROC-derived threshold, the relative risk of death after PRRT was 2.73 (n=31, p=0.04). Ki67 was negatively associated with PFS (p=0.002); however, SUVmean/max failed in prognostication (n.s.). Conclusions: In contrast to conventional PET parameters, assessment of intratumoral heterogeneity demonstrated superior prognostic performance in pNET patients undergoing PRRT. This novel PET-based strategy of outcome prediction prior to PRRT might be useful for patient risk stratification.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerBundschuhBundschuhetal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Bundschuh, Lena and Javadi, Mehrbod S. and Higuchi, Takahiro and Weich, Alexander and Sheikhbahaei, Sara and Pienta, Kenneth J. and Buck, Andreas K. and Pomper, Martin G. and Gorin, Michael A. and Lapa, Constantin and Rowe, Steven P.}, title = {MI-RADS: Molecular Imaging Reporting and Data Systems - A Generalizable Framework for Targeted Radiotracers with Theranostic Implications}, series = {Annals of Nuclear Medicine}, journal = {Annals of Nuclear Medicine}, issn = {0914-7187}, doi = {10.1007/s12149-018-1291-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166995}, year = {2018}, abstract = {Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader's confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems.}, subject = {Positronen-Emissions-Tomografie}, language = {en} }