@article{HeidenreichWengDonhauseretal.2019, author = {Heidenreich, Julius F. and Weng, Andreas M. and Donhauser, Julian and Greiser, Andreas and Chow, Kelvin and Nordbeck, Peter and Bley, Thorsten A. and K{\"o}stler, Herbert}, title = {T1- and ECV-mapping in clinical routine at 3 T: differences between MOLLI, ShMOLLI and SASHA}, series = {BMC Medical Imaging}, volume = {19}, journal = {BMC Medical Imaging}, doi = {10.1186/s12880-019-0362-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201999}, pages = {59}, year = {2019}, abstract = {Background T1 mapping sequences such as MOLLI, ShMOLLI and SASHA make use of different technical approaches, bearing strengths and weaknesses. It is well known that obtained T1 relaxation times differ between the sequence techniques as well as between different hardware. Yet, T1 quantification is a promising tool for myocardial tissue characterization, disregarding the absence of established reference values. The purpose of this study was to evaluate the feasibility of native and post-contrast T1 mapping methods as well as ECV maps and its diagnostic benefits in a clinical environment when scanning patients with various cardiac diseases at 3 T. Methods Native and post-contrast T1 mapping data acquired on a 3 T full-body scanner using the three pulse sequences 5(3)3 MOLLI, ShMOLLI and SASHA in 19 patients with clinical indication for contrast enhanced MRI were compared. We analyzed global and segmental T1 relaxation times as well as respective extracellular volumes and compared the emerged differences between the used pulse sequences. Results T1 times acquired with MOLLI and ShMOLLI exhibited systematic T1 deviation compared to SASHA. Myocardial MOLLI T1 times were 19\% lower and ShMOLLI T1 times 25\% lower compared to SASHA. Native blood T1 times from MOLLI were 13\% lower than SASHA, while post-contrast MOLLI T1-times were only 5\% lower. ECV values exhibited comparably biased estimation with MOLLI and ShMOLLI compared to SASHA in good agreement with results reported in literature. Pathology-suspect segments were clearly differentiated from remote myocardium with all three sequences. Conclusion Myocardial T1 mapping yields systematically biased pre- and post-contrast T1 times depending on the applied pulse sequence. Additionally calculating ECV attenuates this bias, making MOLLI, ShMOLLI and SASHA better comparable. Therefore, myocardial T1 mapping is a powerful clinical tool for classification of soft tissue abnormalities in spite of the absence of established reference values.}, language = {en} }