@article{MeucheBrusaLinsenmairetal.2013, author = {Meuche, Ivonne and Brusa, Oscar and Linsenmair, K. Eduard and Keller, Alexander and Pr{\"o}hl, Heike}, title = {Only distance matters - non-choosy females in a poison frog population}, series = {Frontiers in Zoology}, volume = {10}, journal = {Frontiers in Zoology}, number = {29}, issn = {1742-9994}, doi = {10.1186/1742-9994-10-29}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122617}, year = {2013}, abstract = {Background: Females have often been shown to exhibit preferences for certain male traits. However, little is known about behavioural rules females use when searching for mates in their natural habitat. We investigated mate sampling tactics and related costs in the territorial strawberry poison frog (Oophaga pumilio) possessing a lek-like mating system, where both sequential and simultaneous sampling might occur. We continuously monitored the sampling pattern and behaviour of females during the complete period between two successive matings. Results: We found no evidence that females compared males by visiting them. Instead females mated with the closest calling male irrespective of his acoustic and physical traits, and territory size. Playback experiments in the natural home ranges of receptive females revealed that tested females preferred the nearest speaker and did not discriminate between low and high call rates or dominant frequencies. Conclusions: Our results suggest that females of O. pumilio prefer the closest calling male in the studied population. We hypothesize that the sampling tactic in this population is affected by 1) a strongly female biased sex ratio and 2) a low variance in traits of available males due to strong male-male competition, preventing low quality males from defending a territory and mating.}, language = {en} } @article{KellerGrimmerSteffanDewenter2013, author = {Keller, Alexander and Grimmer, Gudrun and Steffan-Dewenter, Ingolf}, title = {Diverse Microbiota Identified in Whole Intact Nest Chambers of the Red Mason Bee Osmia bicornis (Linnaeus 1758)}, series = {PLoS One}, journal = {PLoS One}, doi = {10.1371/journal.pone.0078296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97305}, year = {2013}, abstract = {Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics.}, language = {en} }