@article{FrankeVilnedaCostaetal.2015, author = {Franke, Katharina and Vilne, Baiba and da Costa, Olivia Prazeres and Rudelius, Martina and Peschel, Christian and Oostendorp, Robert A. J. and Keller, Ulrich}, title = {In vivo hematopoietic Myc activation directs a transcriptional signature in endothelial cells within the bone marrow microenvironment}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {26}, doi = {10.18632/oncotarget.5217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145844}, pages = {21827 -- 21839}, year = {2015}, abstract = {Cancer pathogenesis involves tumor-intrinsic genomic aberrations and tumor-cell extrinsic mechanisms such as failure of immunosurveillance and structural and functional changes in the microenvironment. Using Myc as a model oncogene we established a conditional mouse bone marrow transduction/transplantation model where the conditional activation of the oncoprotein Myc expressed in the hematopoietic system could be assessed for influencing the host microenvironment. Constitutive ectopic expression of Myc resulted in rapid onset of a lethal myeloproliferative disorder with a median survival of 21 days. In contrast, brief 4-day Myc activation by means of the estrogen receptor (ER) agonist tamoxifen did not result in gross changes in the percentage/frequency of hematopoietic lineages or hematopoietic stem/progenitor cell (HSPC) subsets, nor did Myc activation significantly change the composition of the non-hematopoietic microenvironment defined by phenotyping for CD31, ALCAM, and Sca-1 expression. Transcriptome analysis of endothelial CD45-Ter119-cells from tamoxifen-treated MycER bone marrow graft recipients revealed a gene expression signature characterized by specific changes in the Rho subfamily pathway members, in the transcription-translation-machinery and in angiogenesis. In conclusion, intra-hematopoietic Myc activation results in significant transcriptome alterations that can be attributed to oncogene-induced signals from hematopoietic cells towards the microenvironment, e. g. endothelial cells, supporting the idea that even pre-leukemic HSPC highjack components of the niche which then could protect and support the cancer-initiating population.}, language = {en} } @article{HerrmannBuckSchusteretal.2014, author = {Herrmann, Ken and Buck, Andreas K. and Schuster, Tibor and Abbrederis, Kathrin and Bl{\"u}mel, Christina and Santi, Ivan and Rudelius, Martina and Wester, Hans-J{\"u}rgen and Peschel, Christian and Schwaiger, Markus and Dechow, Tobias and Keller, Ulrich}, title = {Week one FLT-PET response predicts complete remission to R-CHOP and survival in DLBCL}, series = {Oncotarget}, volume = {5}, journal = {Oncotarget}, number = {12}, issn = {1949-2553}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120659}, pages = {4050-59}, year = {2014}, abstract = {Despite improved survival in the Rituximab (R) era, a considerable number of patients with diffuse large B-cell lymphoma (DLBCL) ultimately die from the disease. Functional imaging using [18F]fluorodeoxyglucose-PET is suggested for assessment of residual viable tumor very early during treatment but is compromised by non-specific tracer retention in inflammatory lesions. The PET tracer [18F]fluorodeoxythymidine (FLT) as surrogate marker of tumor proliferation may overcome this limitation. We present results of a prospective clinical study testing FLT-PET as superior and early predictor of response to chemotherapy and outcome in DLBCL. 54 patients underwent FLT-PET prior to and one week after the start of R-CHOP chemotherapy. Repetitive FLT-PET imaging was readily implemented into the diagnostic work-up. Our data demonstrate that the reduction of FLT standard uptake valuemean (SUVmean) and SUVmax one week after chemotherapy was significantly higher in patients achieving complete response (CR, n=48; non-CR, n=6; p<0.006). Martingale-residual and Cox proportional hazard analyses showed a significant monotonous decrease of mortality risk with increasing change in SUV. Consistent with these results, early FLT-PET response showed relevant discriminative ability in predicting CR. In conclusion, very early FLT-PET in the course of R-CHOP chemotherapy is feasible and enables identification of patients at risk for treatment failure.}, language = {en} } @article{WesterKellerSchotteliusetal.2015, author = {Wester, Hans J{\"u}rgen and Keller, Ulrich and Schottelius, Margret and Beer, Ambros and Philipp-Abbrederis, Kathrin and Hoffmann, Frauke and Šimeček, Jakub and Gerngross, Carlos and Lassmann, Michael and Herrmann, Ken and Pellegata, Natalia and Rudelius, Martina and Kessler, Horst and Schwaiger, Markus}, title = {Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging}, series = {Theranostics}, volume = {5}, journal = {Theranostics}, number = {6}, doi = {10.7150/thno.11251}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144537}, pages = {618-630}, year = {2015}, abstract = {Chemokine ligand-receptor interactions play a pivotal role in cell attraction and cellular trafficking, both in normal tissue homeostasis and in disease. In cancer, chemokine receptor-4 (CXCR4) expression is an adverse prognostic factor. Early clinical studies suggest that targeting CXCR4 with suitable high-affinity antagonists might be a novel means for therapy. In addition to the preclinical evaluation of [\(^{68}\)Ga]Pentixafor in mice bearing human lymphoma xenografts as an exemplary CXCR4-expressing tumor entity, we report on the first clinical applications of [\(^{68}\)Ga]Pentixafor-Positron Emission Tomography as a powerful method for CXCR4 imaging in cancer patients. [\(^{68}\)Ga]Pentixafor binds with high affinity and selectivity to human CXCR4 and exhibits a favorable dosimetry. [\(^{68}\)Ga]Pentixafor-PET provides images with excellent specificity and contrast. This non-invasive imaging technology for quantitative assessment of CXCR4 expression allows to further elucidate the role of CXCR4/CXCL12 ligand interaction in the pathogenesis and treatment of cancer, cardiovascular diseases and autoimmune and inflammatory disorders.}, language = {en} } @article{PhilippAbbrederisHerrmannKnopetal.2015, author = {Philipp-Abbrederis, Kathrin and Herrmann, Ken and Knop, Stefan and Schottelius, Margret and Eiber, Matthias and L{\"u}ckerath, Katharina and Pietschmann, Elke and Habringer, Stefan and Gerngroß, Carlos and Franke, Katharina and Rudelius, Martina and Schirbel, Andreas and Lapa, Constantin and Schwamborn, Kristina and Steidle, Sabine and Hartmann, Elena and Rosenwald, Andreas and Kropf, Saskia and Beer, Ambros J and Peschel, Christian and Einsele, Hermann and Buck, Andreas K and Schwaiger, Markus and G{\"o}tze, Katharina and Wester, Hans-J{\"u}rgen and Keller, Ulrich}, title = {In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma}, series = {EMBO Molecular Medicine}, volume = {7}, journal = {EMBO Molecular Medicine}, number = {4}, doi = {10.15252/emmm.201404698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148738}, pages = {477-487}, year = {2015}, abstract = {CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases.}, language = {en} } @article{EngelRudeliusSlawskaetal.2016, author = {Engel, Katharina and Rudelius, Martina and Slawska, Jolanta and Jacobs, Laura and Abhari, Behnaz Ahangarian and Altmann, Bettina and Kurutz, Julia and Rathakrishnan, Abirami and Fern{\´a}ndez-S{\´a}iz, Vanesa and Brunner, Andr{\"a} and Targosz, Bianca-Sabrina and Loewecke, Felicia and Gloeckner, Christian Johannes and Ueffing, Marius and Fulda, Simone and Pfreundschuh, Michael and Tr{\"u}mper, Lorenz and Klapper, Wolfram and Keller, Ulrich and Jost, Philipp J. and Rosenwald, Andreas and Peschel, Christian and Bassermann, Florian}, title = {USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma}, series = {EMBO Molecular Medicine}, volume = {8}, journal = {EMBO Molecular Medicine}, doi = {10.15252/emmm.201506047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165016}, pages = {851-862}, year = {2016}, abstract = {The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC-induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X-linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B-cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event-free survival in patients treated with spindle poison-containing chemotherapy. Accordingly, aggressive B-cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eμ-Myc lymphoma model. Together, we specify the USP9X-XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B-cell lymphoma.}, language = {en} }