@article{KleinGrohWeishauptetal.2015, author = {Klein, Dennis and Groh, Janos and Weishaupt, Andreas and Martini, Rudolf}, title = {Endogenous antibodies contribute to macrophage-mediated demyelination in a mouse model for CMT1B}, series = {Journal of Neuroinflammation}, volume = {12}, journal = {Journal of Neuroinflammation}, number = {49}, doi = {10.1186/s12974-015-0267-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125036}, year = {2015}, abstract = {Background We could previously identify components of both the innate and the adaptive immune system as disease modifiers in the pathogenesis of models for Charcot-Marie-Tooth (CMT) neuropathies type 1B and 1X. As part of the adaptive immune system, here we investigated the role of antibodies in a model for CMT1B. Methods Antibodies were localized and characterized in peripheral nerves of the CMT1B model by immunohistochemistry and Western blot analysis. Experimental ablation of antibodies was performed by cross breeding the CMT1B models with mutants deficient in B-lymphocytes (JHD-/- mutants). Ameliorated demyelination by antibody deficiency was reverted by intravenous injection of mouse IgG fractions. Histopathological analysis was performed by immunocytochemistry and light and quantitative electron microscopy. Results We demonstrate that in peripheral nerves of a mouse model for CMT1B, endogenous antibodies strongly decorate endoneurial tubes of peripheral nerves. These antibodies comprise IgG and IgM subtypes and are preferentially, but not exclusively, associated with nerve fiber aspects nearby the nodes of Ranvier. In the absence of antibodies, the early demyelinating phenotype is substantially ameliorated. Reverting the neuropathy by reconstitution with murine IgG fractions identified accumulating antibodies as potentially pathogenic at this early stage of disease. Conclusions Our study demonstrates that in a mouse model for CMT1B, endogenous antibodies contribute to early macrophage-mediated demyelination and disease progression. Thus, both the innate and adaptive immune system are mutually interconnected in a genetic model for demyelination. Since in Wallerian degeneration antibodies have also been shown to be involved in myelin phagocytosis, our study supports our view that inherited demyelination and Wallerian degeneration share common mechanisms, which are detrimental when activated under nonlesion conditions.}, language = {en} } @article{IpKronerGrohetal.2012, author = {Ip, Chi Wang and Kroner, Antje and Groh, Janos and Huber, Marianne and Klein, Dennis and Spahn, Irene and Diem, Ricarda and Williams, Sarah K. and Nave, Klaus-Armin and Edgar, Julia M. and Martini, Rudolf}, title = {Neuroinflammation by Cytotoxic T-Lymphocytes Impairs Retrograde Axonal Transport in an Oligodendrocyte Mutant Mouse}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0042554}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134982}, pages = {e42554}, year = {2012}, abstract = {Mice overexpressing proteolipid protein (PLP) develop a leukodystrophy-like disease involving cytotoxic, CD8+ T-lymphocytes. Here we show that these cytotoxic T-lymphocytes perturb retrograde axonal transport. Using fluorogold stereotactically injected into the colliculus superior, we found that PLP overexpression in oligodendrocytes led to significantly reduced retrograde axonal transport in retina ganglion cell axons. We also observed an accumulation of mitochondria in the juxtaparanodal axonal swellings, indicative for a disturbed axonal transport. PLP overexpression in the absence of T-lymphocytes rescued retrograde axonal transport defects and abolished axonal swellings. Bone marrow transfer from wildtype mice, but not from perforin- or granzyme B-deficient mutants, into lymphocyte-deficient PLP mutant mice led again to impaired axonal transport and the formation of axonal swellings, which are predominantly located at the juxtaparanodal region. This demonstrates that the adaptive immune system, including cytotoxic T-lymphocytes which release perforin and granzyme B, are necessary to perturb axonal integrity in the PLP-transgenic disease model. Based on our observations, so far not attended molecular and cellular players belonging to the immune system should be considered to understand pathogenesis in inherited myelin disorders with progressive axonal damage.}, language = {en} } @article{KleinGrohYuanetal.2022, author = {Klein, Dennis and Groh, Janos and Yuan, Xidi and Berve, Kristina and Stassart, Ruth and Fledrich, Robert and Martini, Rudolf}, title = {Early targeting of endoneurial macrophages alleviates the neuropathy and affects abnormal Schwann cell differentiation in a mouse model of Charcot-Marie-Tooth 1A}, series = {Glia}, volume = {70}, journal = {Glia}, number = {6}, doi = {10.1002/glia.24158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318714}, pages = {1100 -- 1116}, year = {2022}, abstract = {We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.}, language = {en} }