@article{KleinschnitzMenclGarzetal.2013, author = {Kleinschnitz, Christoph and Mencl, Stine and Garz, Cornelia and Niklass, Solveig and Braun, Holger and G{\"o}b, Eva and Homola, Gy{\"o}rgy and Heinze, Hans-Jochen and Reymann, Klaus G. and Schreiber, Stefanie}, title = {Early microvascular dysfunction in cerebral small vessel disease is not detectable on 3.0 Tesla magnetic resonance imaging: a longitudinal study in spontaneously hypertensive stroke-prone rats}, series = {Experimental \& Translational Stroke Medicine}, journal = {Experimental \& Translational Stroke Medicine}, doi = {10.1186/2040-7378-5-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97056}, year = {2013}, abstract = {Background Human cerebral small vessel disease (CSVD) has distinct histopathologic and imaging findings in its advanced stages. In spontaneously hypertensive stroke-prone rats (SHRSP), a well-established animal model of CSVD, we recently demonstrated that cerebral microangiopathy is initiated by early microvascular dysfunction leading to the breakdown of the blood-brain barrier and an activated coagulatory state resulting in capillary and arteriolar erythrocyte accumulations (stases). In the present study, we investigated whether initial microvascular dysfunction and other stages of the pathologic CSVD cascade can be detected by serial magnetic resonance imaging (MRI). Findings Fourteen SHRSP and three control (Wistar) rats (aged 26-44 weeks) were investigated biweekly by 3.0 Tesla (3 T) MRI. After perfusion, brains were stained with hematoxylin-eosin and histology was correlated with MRI data. Three SHRSP developed terminal CSVD stages including cortical, hippocampal, and striatal infarcts and macrohemorrhages, which could be detected consistently by MRI. Corresponding histology showed small vessel thromboses and increased numbers of small perivascular bleeds in the infarcted areas. However, 3 T MRI failed to visualize intravascular erythrocyte accumulations, even in those brain regions with the highest densities of affected vessels and the largest vessels affected by stases, as well as failing to detect small perivascular bleeds. Conclusion Serial MRI at a field strength of 3 T failed to detect the initial microvascular dysfunction and subsequent small perivascular bleeds in SHRSP; only terminal stages of cerebral microangiopathy were reliably detected. Further investigations at higher magnetic field strengths (7 T) using blood- and flow-sensitive sequences are currently underway.}, language = {en} } @article{KleinschnitzGoebelMeuthetal.2014, author = {Kleinschnitz, Christoph and G{\"o}bel, Kerstin and Meuth, Sven G. and Kraft, Peter}, title = {Glatiramer acetate does not protect from acute ischemic stroke in mice}, doi = {10.1186/2040-7378-6-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110528}, year = {2014}, abstract = {Background The role of the immune system in the pathophysiology of acute ischemic stroke is increasingly recognized. However, targeted treatment strategies to modulate immunological pathways in stroke are still lacking. Glatiramer acetate is a multifaceted immunomodulator approved for the treatment of relapsing-remitting multiple sclerosis. Experimental studies suggest that glatiramer acetate might also work in other neuroinflammatory or neurodegenerative diseases apart from multiple sclerosis. Findings We evaluated the efficacy of glatiramer acetate in a mouse model of brain ischemia/reperfusion injury. 60 min of transient middle cerebral artery occlusion was induced in male C57Bl/6 mice. Pretreatment with glatiramer acetate (3.5 mg/kg bodyweight) 30 min before the induction of stroke did not reduce lesion volumes or improve functional outcome on day 1. Conclusions Glatiramer acetate failed to protect from acute ischemic stroke in our hands. Further studies are needed to assess the true therapeutic potential of glatiramer acetate and related immunomodulators in brain ischemia.}, language = {en} } @techreport{LinkerMeuthMagnusetal.2012, author = {Linker, Ralf, A. and Meuth, Sven G. and Magnus, Tim and Korn, Thomas and Kleinschnitz, Christoph}, title = {Report on the 4'th scientific meeting of the "Verein zur F{\"o}rderung des Wissenschaftlichen Nachwuchses in der Neurologie" (NEUROWIND e.V.) held in Motzen, Germany, Nov. 2'nd - Nov. 4'th, 2012 [meeting report]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76407}, year = {2012}, abstract = {From November 2nd - 4th 2012, the 4th NEUROWIND e.V. meeting was held in Motzen, Brandenburg, Germany. Again more than 60 participants, predominantly at the doctoral student or postdoc level, gathered to share their latest findings in the fields of neurovascular research, neurodegeneration and neuroinflammation. Like in the previous years, the symposium provided an excellent platform for scientific exchange and the presentation of innovative projects in the stimulating surroundings of the Brandenburg outback. This year's keynote lecture on the pathophysiological relevance of neuronal networks was given by Christian Gerloff, Head of the Department of Neurology at the University Clinic of Hamburg-Eppendorf. Another highlight of the meeting was the awarding of the NEUROWIND e.V. prize for young scientists working in the field of experimental neurology. The award is donated by the Merck Serono GmbH, Darmstadt, Germany and is endowed with 20.000 Euro. This year the jury decided unanimously to adjudge the award to Michael Gliem from the Department of Neurology at the University Clinic of D{\"u}sseldorf (group of Sebastian Jander), Germany, for his outstanding work on different macrophage subsets in the pathogenesis of ischemic stroke published in the Annals of Neurology in 2012.}, subject = {Medizin}, language = {en} } @article{AlbertWeissenbergerVarrallyayRaslanetal.2012, author = {Albert-Weißenberger, Christiane and V{\´a}rrallyay, Csan{\´a}d and Raslan, Furat and Kleinschnitz, Christoph and Sir{\´e}n, Anna-Leena}, title = {An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75368}, year = {2012}, abstract = {Traumatic brain injury (TBI) is a result of an outside force causing immediate mechanical disruption of brain tissue and delayed pathogenic events. In order to examine injury processes associated with TBI, a number of rodent models to induce brain trauma have been described. However, none of these models covers the entire spectrum of events that might occur in TBI. Here we provide a thorough methodological description of a straightforward closed head weight drop mouse model to assess brain injuries close to the clinical conditions of human TBI.}, subject = {Medizin}, language = {en} } @article{RaslanAlbertWeissenbergerErnestusetal.2012, author = {Raslan, Furat and Albert-Weißenberger, Christiane and Ernestus, Ralf-Ingo and Kleinschnitz, Christoph and Sir{\´e}n, Anna-Leena}, title = {Focal brain trauma in the cryogenic lesion model in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75419}, year = {2012}, abstract = {The method to induce unilateral cryogenic lesions was first described in 1958 by Klatzo. We describe here an adaptation of this model that allows reliable measurement of lesion volume and vasogenic edema by 2, 3, 5-triphenyltetrazolium chloride-staining and Evans blue extravasation in mice. A copper or aluminium cylinder with a tip diameter of 2.5 mm is cooled with liquid nitrogen and placed on the exposed skull bone over the parietal cortex (coordinates from bregma: 1.5 mm posterior, 1.5 mm lateral). The tip diameter and the contact time between the tip and the parietal skull determine the extent of cryolesion. Due to an early damage of the blood brain barrier, the cryogenic cortical injury is characterized by vasogenic edema, marked brain swelling, and inflammation. The lesion grows during the first 24 hours, a process involving complex interactions between endothelial cells, immune cells, cerebral blood flow, and the intracranial pressure. These contribute substantially to the damage from the initial injury. The major advantage of the cryogenic lesion model is the circumscribed and highly reproducible lesion size and location.}, subject = {Medizin}, language = {en} } @article{GunrebenGeisKleinschnitz2013, author = {Gunreben, Ignaz and Geis, Christian and Kleinschnitz, Christoph}, title = {Acute tetraparesis secondary to bilateral precentral gyral cerebral ischemia: a case report}, series = {Journal of Medical Case Reports}, journal = {Journal of Medical Case Reports}, doi = {10.1186/1752-1947-7-61}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96179}, year = {2013}, abstract = {Introduction Sudden tetraparesis represents a neurological emergency and is most often caused by traumatic spinal cord injury, spinal epidural bleeding or brainstem ischemia and less frequently by medial disc herniation or spinal ischemia. Case presentation Here we report the rare case of an 82-year-old Caucasian man who developed severe tetraparesis four days after radical cystoprostatectomy. An emergency diagnostic study for spinal cord affection was normal. Brain magnetic resonance imaging revealed acute bilateral ischemic strokes in the precentral gyri as the underlying cause. Conclusions This case report underlines the need to also consider unusual causes of tetraparesis in an emergency situation apart from spinal cord or brain stem injury in order not to leave severe symptomatology unclear and possibly miss therapeutic options.}, language = {en} } @article{KraftFleischerWiedmannetal.2017, author = {Kraft, Peter and Fleischer, Anna and Wiedmann, Silke and R{\"u}cker, Viktoria and Mackenrodt, Daniel and Morbach, Caroline and Malzahn, Uwe and Kleinschnitz, Christoph and St{\"o}rk, Stefan and Heuschmann, Peter U.}, title = {Feasibility and diagnostic accuracy of point-of-care handheld echocardiography in acute ischemic stroke patients - a pilot study}, series = {BMC Neurology}, volume = {17}, journal = {BMC Neurology}, number = {159}, doi = {10.1186/s12883-017-0937-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158081}, year = {2017}, abstract = {Background: Standard echocardiography (SE) is an essential part of the routine diagnostic work-up after ischemic stroke (IS) and also serves for research purposes. However, access to SE is often limited. We aimed to assess feasibility and accuracy of point-of-care (POC) echocardiography in a stroke unit (SU) setting. Methods: IS patients were recruited on the SU of the University Hospital W{\"u}rzburg, Germany. Two SU team members were trained in POC echocardiography for a three-month period to assess a set of predefined cardiac parameters including left ventricular ejection fraction (LVEF). Diagnostic agreement was assessed by comparing POC with SE executed by an expert sonographer, and intraclass correlation coefficient (ICC) or kappa (κ) with 95\% confidence intervals (95\% CI) were calculated. Results: In the 78 patients receiving both POC and SE agreement for cardiac parameters was good, with ICC varying from 0.82 (95\% CI 0.71-0.89) to 0.93 (95\% CI 0.87-0.96), and κ from 0.39 (-95\% CI 0.14-0.92) to 0.79 (95\% CI 0.67-0.91). Detection of systolic dysfunction with POC echocardiography compared to SE was very good, with an area under the curve of 0.99 (0.96-1.00). Interrater agreement for LVEF measured by POC echocardiography was good with κ 0.63 (95\% CI 0.40-0.85). Conclusions: POC echocardiography in a SU setting is feasible enabling reliable quantification of LVEF and preliminary assessment of selected cardiac parameters that might be used for research purposes. Its potential clinical utility in triaging stroke patients who should undergo or do not necessarily require SE needs to be investigated in larger prospective diagnostic studies.}, language = {en} } @article{RovitusoDuffySchroeteretal.2015, author = {Rovituso, Damiano M. and Duffy, Catharina E. and Schroeter, Michael and Kaiser, Claudia C. and Kleinschnitz, Christoph and Bayas, Antonios and Elsner, Rebecca and Kuerten, Stefanie}, title = {The brain antigen-specific B cell response correlates with glatiramer acetate responsiveness in relapsing-remitting multiple sclerosis patients}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {14265}, doi = {10.1038/srep14265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148172}, year = {2015}, abstract = {B cells have only recently begun to attract attention in the immunopathology of multiple sclerosis (MS). Suitable markers for the prediction of treatment success with immunomodulatory drugs are still missing. Here we evaluated the B cell response to brain antigens in n = 34 relapsing-remitting MS (RRMS) patients treated with glatiramer acetate (GA) using the enzyme-linked immunospot technique (ELISPOT). Our data demonstrate that patients can be subdivided into responders that show brain-specific B cell reactivity in the blood and patients without this reactivity. Only in patients that classified as B cell responders, there was a significant positive correlation between treatment duration and the time since last relapse in our study. This correlation was GA-specific because it was absent in a control group that consisted of interferon-\(\beta\) (IFN-\(\beta\))-treated RRMS patients (n = 23). These data suggest that GA has an effect on brain-reactive B cells in a subset of patients and that only this subset benefits from treatment. The detection of brain-reactive B cells is likely to be a suitable tool to identify drug responders.}, language = {en} } @article{FeldheimKesslerFeldheimetal.2022, author = {Feldheim, Jonas and Kessler, Almuth F. and Feldheim, Julia J. and Schulz, Ellina and Wend, David and Lazaridis, Lazaros and Kleinschnitz, Christoph and Glas, Martin and Ernestus, Ralf-Ingo and Brandner, Sebastian and Monoranu, Camelia M. and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Effects of long-term temozolomide treatment on glioblastoma and astrocytoma WHO grade 4 stem-like cells}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms23095238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284417}, year = {2022}, abstract = {Glioblastoma leads to a fatal course within two years in more than two thirds of patients. An essential cornerstone of therapy is chemotherapy with temozolomide (TMZ). The effect of TMZ is counteracted by the cellular repair enzyme O\(^6\)-methylguanine-DNA methyltransferase (MGMT). The MGMT promoter methylation, the main regulator of MGMT expression, can change from primary tumor to recurrence, and TMZ may play a significant role in this process. To identify the potential mechanisms involved, three primary stem-like cell lines (one astrocytoma with the mutation of the isocitrate dehydrogenase (IDH), CNS WHO grade 4 (HGA)), and two glioblastoma (IDH-wildtype, CNS WHO grade 4) were treated with TMZ. The MGMT promoter methylation, migration, proliferation, and TMZ-response of the tumor cells were examined at different time points. The strong effects of TMZ treatment on the MGMT methylated cells were observed. Furthermore, TMZ led to a loss of the MGMT promoter hypermethylation and induced migratory rather than proliferative behavior. Cells with the unmethylated MGMT promoter showed more aggressive behavior after treatment, while HGA cells reacted heterogenously. Our study provides further evidence to consider the potential adverse effects of TMZ chemotherapy and a rationale for investigating potential relationships between TMZ treatment and change in the MGMT promoter methylation during relapse.}, language = {en} } @article{SchuhmannBittnerMeuthetal.2015, author = {Schuhmann, Michael K. and Bittner, Stefan and Meuth, Sven G. and Kleinschnitz, Christoph and Fluri, Felix}, title = {Fingolimod (FTY720-P) does not stabilize the blood-brain barrier under inflammatory conditions in an in vitro model}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms161226177}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145047}, pages = {29454-29466}, year = {2015}, abstract = {Breakdown of the blood-brain barrier (BBB) is an early hallmark of multiple sclerosis (MS), a progressive inflammatory disease of the central nervous system. Cell adhesion in the BBB is modulated by sphingosine-1-phosphate (S1P), a signaling protein, via S1P receptors (S1P\(_1\)). Fingolimod phosphate (FTY720-P) a functional S1P\(_1\) antagonist has been shown to improve the relapse rate in relapsing-remitting MS by preventing the egress of lymphocytes from lymph nodes. However, its role in modulating BBB permeabilityin particular, on the tight junction proteins occludin, claudin 5 and ZO-1has not been well elucidated to date. In the present study, FTY720-P did not change the transendothelial electrical resistance in a rat brain microvascular endothelial cell (RBMEC) culture exposed to inflammatory conditions and thus did not decrease endothelial barrier permeability. In contrast, occludin was reduced in RBMEC culture after adding FTY720-P. Additionally, FTY720-P did not alter the amount of endothelial matrix metalloproteinase (MMP)-9 and MMP-2 in RBMEC cultures. Taken together, our observations support the assumption that S1P\(_1\) plays a dual role in vascular permeability, depending on its ligand. Thus, S1P\(_1\) provides a mechanistic basis for FTY720-P-associated disruption of endothelial barrierssuch as the blood-retinal barrierwhich might result in macular edema.}, language = {en} }