@article{PhamHelluyBraeuningeretal.2010, author = {Pham, Mirko and Helluy, X. and Braeuninger, S. and Jakob, P. and Stoll, G. and Kleinschnitz, Christoph and Bendszus, M.}, title = {Outcome of experimental stroke in C57Bl/6 and Sv/129 mice assessed by multimodal ultra-high field MRI}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68115}, year = {2010}, abstract = {Transgenic mice bred on C57Bl/6 or Sv/129 genetic background are frequently used in stroke research. It is well established that variations in cerebrovascular anatomy and hemodynamics can influence stroke outcome in different inbred mouse lines. We compared stroke development in C57Bl/6 and Sv/129 mice in the widely used model of transient middle cerebral artery occlusion (tMCAO) by multimodal ultra-high field magnetic resonance imaging (MRI). C57Bl/6 and Sv/129 mice underwent 60 min of tMCAO and were analyzed by MRI 2 h and 24 h afterwards. Structural and functional images were registered to a standard anatomical template. Probability maps of infarction were rendered by automated segmentation from quantitative T2-relaxometric images. Whole-brain segmentation of infarction was accomplished manually on high-resolution T2-weighted (T2-w) RARE images. Cerebral perfusion (cerebral blood flow, CBF) was measured quantitatively by modified continuous arterial-spin-labeling (CASL) and apparent diffusion coefficients (ADC) by spin-echo diffusion-weighted imaging (DWI). Probabilities of cortical (95.1\% ± 3.1 vs. 92.1\% ± 2.5; p > 0.05) and subcortical (100\% vs. 100\%; p > 0.05) infarctions at 24 h were similar in both groups as was the whole-brain volumetric extent of cerebral infarction. In addition, CBF and ADC values did not differ between C57Bl/6 and Sv/129 mice at any time point or region of interest. The C57Bl/6 and Sv/129 genetic background is no major confounding factor of infarct size and cerebral perfusion in the tMCAO model.}, subject = {NMR-Tomographie}, language = {en} } @article{EhlingBittnerBobaketal.2010, author = {Ehling, P. and Bittner, S. and Bobak, N. and Schwarz, T. and Wiendl, H. and Budde, T. and Kleinschnitz, Christoph and Meuth, S. G.}, title = {Two pore domain potassium channels in cerebral ischemia: a focus on K2p9.1 (TASK3, KCNK9)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68129}, year = {2010}, abstract = {BACKGROUND: Recently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke. Here, we question the role of the closely related K2P channel K2P9.1. METHODS: We combine electrophysiological recordings in brain-slice preparations of wildtype and K2P9.1-/- mice with an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of K2P9.1 in stroke formation. RESULTS: Patch-clamp recordings reveal that currents mediated through K2P9.1 can be obtained in slice preparations of the dorsal lateral geniculate nucleus (dLGN) as a model of central nervous relay neurons. Current characteristics are indicative of K2P9.1 as they display an increase upon removal of extracellular divalent cations, an outward rectification and a reversal potential close to the potassium equilibrium potential. Lowering extracellular pH values from 7.35 to 6.0 showed comparable current reductions in neurons from wildtype and K2P9.1-/- mice (68.31 +/- 9.80\% and 69.92 +/- 11.65\%, respectively). These results could be translated in an in vivo model of cerebral ischemia where infarct volumes and functional outcomes showed a none significant tendency towards smaller infarct volumes in K2P9.1-/- animals compared to wildtype mice 24 hours after 60 min of tMCAO induction (60.50 +/- 17.31 mm3 and 47.10 +/- 19.26 mm3, respectively). CONCLUSIONS: Together with findings from earlier studies on K2P2.1-/- and K2P3.1-/- mice, the results of the present study on K2P9.1-/- mice indicate a differential contribution of K2P channel subtypes to the diverse and complex in vivo effects in rodent models of cerebral ischemia.}, subject = {Kaliumkanal}, language = {en} } @techreport{MagnusLinkerMeuthetal.2011, author = {Magnus, Tim and Linker, Ralf A. and Meuth, Sven G. and Kleinschnitz, Christoph and Korn, Thomas}, title = {Report on the 2nd scientific meeting of the "Verein zur Foerderung des Wissenschaftlichen Nachwuchses in der Neurologie" (NEUROWIND e.V.) held in Motzen, Germany, Oct. 29'th - Oct. 31'st, 2010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68789}, year = {2011}, abstract = {Summary of the scientific contributions to the NEUROWIND meeting 2010: Contributions in the fields of neuroimmunology and neurodegeneration}, subject = {Wissenschaftlicher Nachwuchs}, language = {en} } @article{KraftSchwarzMeijersetal.2010, author = {Kraft, Peter and Schwarz, Tobias and Meijers, Joost C. M. and Stoll, Guido and Kleinschnitz, Christoph}, title = {Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) Deficient Mice Are Susceptible to Intracerebral Thrombosis and Ischemic Stroke}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68519}, year = {2010}, abstract = {Background: Thrombus formation is a key step in the pathophysiology of acute ischemic stroke and results from the activation of the coagulation cascade. Thrombin plays a central role in this coagulation system and contributes to thrombus stability via activation of thrombin-activatable fibrinolysis inhibitor (TAFIa). TAFIa counteracts endogenous fibrinolysis at different stages and elevated TAFI levels are a risk factor for thrombotic events including ischemic stroke. Although substantial in vitro data on the influence of TAFI on the coagulation-fibrinolysis-system exist, investigations on the consequences of TAFI inhibition in animal models of cerebral ischemia are still lacking. In the present study we analyzed stroke development and post stroke functional outcome in TAFI-/- mice. Methodology/Principal Findings: TAFI-/- mice and wild-type controls were subjected to 60 min transient middle cerebral artery occlusion (tMCAO) using the intraluminal filament method. After 24 hours, functional outcome scores were assessed and infarct volumes weremeasured from 2,3,5-Triphenyltetrazoliumchloride (TTC)-stained brain slices. Hematoxylin and eosin (H\&E) staining was used to estimate the extent of neuronal cell damage. Thrombus formation within the infarcted brain areas was analyzed by immunoblot. Infarct volumes and functional outcomes did not significantly differ between TAFI-/- mice and controls (p.0.05). Histology revealed extensive ischemic neuronal damage regularly including the cortex and the basal ganglia in both groups. TAFI deficiency also had no influence on intracerebral fibrin(ogen) formation after tMCAO. Conclusion: Our study shows that TAFI does not play a major role for thrombus formation and neuronal degeneration after ischemic brain challenge.}, subject = {Thrombus}, language = {en} } @article{KraftBenzAustinatetal.2010, author = {Kraft, Peter and Benz, Peter Michael and Austinat, Madeleine and Brede, Marc Elmar and Schuh, Kai and Walter, Ulrich and Stoll, Guido and Kleinschnitz, Christoph}, title = {Deficiency of Vasodilator-Stimulated Phosphoprotein (VASP) Increases Blood-Brain-Barrier Damage and Edema Formation after Ischemic Stroke in Mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68522}, year = {2010}, abstract = {Background: Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP) is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification. Methodology/Principal Findings: Focal cerebral ischemia was induced in Vasp2/2 mice and wild-type (WT) littermates by transient middle cerebral artery occlusion (tMCAO). Evan's Blue tracer was applied to visualize the extent of blood-brainbarrier (BBB) damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p,0.05) and edema volumes (1.7 mm360.5 mm3 versus 0.8 mm360.4 mm3; p,0.0001) were significantly enhanced in Vasp2/2 mice compared to controls on day 1 after tMCAO. This was accompanied by a significant increase in infarct size (56.1 mm3617.3 mm3 versus 39.3 mm3610.7 mm3, respectively; p,0.01) and a non significant trend (p.0.05) towards worse neurological outcomes. Conclusion: Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage.}, subject = {Vasodilatator-stimuliertes Phosphoprotein}, language = {en} } @article{KleinschnitzGrundWingleretal.2010, author = {Kleinschnitz, Christoph and Grund, Henrike and Wingler, Kirstin and Armitage, Melanie E. and Jones, Emma and Mittal, Manish and Barit, David and Schwarz, Tobias and Geis, Christian and Kraft, Peter and Barthel, Konstanze and Schuhmann, Michael K. and Herrmann, Alexander M. and Meuth, Sven G. and Stoll, Guido and Meurer, Sabine and Schrewe, Anja and Becker, Lore and Gailus-Durner, Valerie and Fuchs, Helmut and Klopstock, Thomas and de Angelis, Martin Hrabe and Jandeleit-Dahm, Karin and Shah, Ajay M. and Weissmann, Norbert and Schmidt, Harald H. H. W.}, title = {Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68416}, year = {2010}, abstract = {Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90\% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox42/2) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox42/2 mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.}, subject = {Schlaganfall}, language = {en} } @article{BoltzeKleinschnitzReymannetal.2012, author = {Boltze, Johannes and Kleinschnitz, Christoph and Reymann, Klaus G. and Reiser, Georg and Wagner, Daniel-Christoph and Kranz, Alexander and Michalski, Dominik}, title = {Neurovascular pathophysiology in cerebral ischemia, dementia and the ageing brain - current trends in basic, translational and clinical research}, series = {Experimental \& Translational Stroke Medicine}, volume = {4}, journal = {Experimental \& Translational Stroke Medicine}, number = {14}, doi = {doi:10.1186/2040-7378-4-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126679}, year = {2012}, abstract = {The 7th International Symposium on Neuroprotection and Neurorepair was held from May 2nd to May 5th, 2012 in Potsdam, Germany. The symposium, which directly continues the successful Magdeburg meeting series, attracted over 330 colleagues from 29 countries to discuss recent findings and advances in the field. The focus of the 2012 symposium was widened from stroke and traumatic brain injury to neurodegenerative diseases, notably dementia, and more generally the ageing brain. Thereby, emphasis was given on neurovascular aspects of neurodegeneration and stroke including the blood-brain barrier, recent findings regarding the pathomechanism of Alzheimer's disease, and brain imaging approaches. In addition, neurobiochemical aspects of neuroprotection, the role of astrogliosis, the clinical progress of cell-based approaches as well as translational hurdles and opportunities were discussed in-depth. This review summarizes some of the most stimulating discussions and reports from the meeting.}, language = {en} } @article{KraftDeMeyerKleinschnitz2012, author = {Kraft, Peter and De Meyer, Simon F. and Kleinschnitz, Christoph}, title = {Next-Generation Antithrombotics in Ischemic Stroke: Preclinical Perspective on 'Bleeding-Free Antithrombosis'}, series = {Journal of Cerebral Blood Flow and Metabolism}, volume = {32}, journal = {Journal of Cerebral Blood Flow and Metabolism}, number = {10}, doi = {10.1038/jcbfm.2012.108}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126538}, pages = {1831-1840}, year = {2012}, abstract = {The present antithrombotic drugs used to treat or prevent ischemic stroke have significant limitations: either they show only moderate efficacy (platelet inhibitors), or they significantly increase the risk for hemorrhages (thrombolytics, anticoagulants). Although most strokes are caused by thrombotic or embolic vessel occlusions, the pathophysiological role of platelets and coagulation is largely unclear. The introduction of novel transgenic mouse models and specific coagulation inhibitors facilitated a detailed analysis of molecular pathways mediating thrombus formation in models of acute ischemic stroke. Prevention of early platelet adhesion to the damaged vessel wall by blocking platelet surface receptors glycoprotein Ib alpha (GPIbα) or glycoprotein VI (GPVI) protects from stroke without provoking bleeding complications. In addition, downstream signaling of GPIbα and GPVI has a key role in platelet calcium homeostasis and activation. Finally, the intrinsic coagulation cascade, activated by coagulation factor XII (FXII), has only recently been identified as another important mediator of thrombosis in cerebrovascular disease, thereby disproving established concepts. This review summarizes the latest insights into the pathophysiology of thrombus formation in the ischemic brain. Potential clinical merits of novel platelet inhibitors and anticoagulants as powerful and safe tools to combat ischemic stroke are discussed.}, language = {en} } @article{KraftDrechslerSchuhmannetal.2015, author = {Kraft, Peter and Drechsler, Christiane and Schuhmann, Michael K. and Gunreben, Ignaz and Kleinschnitz, Christoph}, title = {Characterization of Peripheral Immune Cell Subsets in Patients with Acute and Chronic Cerebrovascular Disease: A Case-Control Study}, series = {International Journal of Molecular Science}, volume = {16}, journal = {International Journal of Molecular Science}, number = {10}, doi = {10.3390/ijms161025433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126319}, pages = {25433-25449}, year = {2015}, abstract = {Immune cells (IC) play a crucial role in murine stroke pathophysiology. However, data are limited on the role of these cells in ischemic stroke in humans. We therefore aimed to characterize and compare peripheral IC subsets in patients with acute ischemic stroke/transient ischemic attack (AIS/TIA), chronic cerebrovascular disease (CCD) and healthy volunteers (HV). We conducted a case-control study of patients with AIS/TIA (n = 116) or CCD (n = 117), and HV (n = 104) who were enrolled at the University Hospital W{\"u}rzburg from 2010 to 2013. We determined the expression and quantity of IC subsets in the three study groups and performed correlation analyses with demographic and clinical parameters. The quantity of several IC subsets differed between the AIS/TIA, CCD, and HV groups. Several clinical and demographic variables independently predicted the quantity of IC subsets in patients with AIS/TIA. No significant changes in the quantity of IC subsets occurred within the first three days after AIS/TIA. Overall, these findings strengthen the evidence for a pathophysiologic role of IC in human ischemic stroke and the potential use of IC-based biomarkers for the prediction of stroke risk. A comprehensive description of IC kinetics is crucial to enable the design of targeted treatment strategies.}, language = {en} } @article{FluriFleischerKleinschnitz2015, author = {Fluri, Felix and Fleischer, Michael and Kleinschnitz, Christoph}, title = {Accidental Thrombolysis in a Stroke Patient Receiving Apixaban}, series = {Cerebrovascular Diseases Extra}, volume = {5}, journal = {Cerebrovascular Diseases Extra}, doi = {10.1159/000375181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126326}, pages = {55-56}, year = {2015}, abstract = {No abstract available.}, language = {en} } @article{AlbertWeissenbergerMenclSchuhmannetal.2014, author = {Albert-Weissenberger, Christiane and Mencl, Stine and Schuhmann, Michael K. and Salur, Irmak and G{\"o}b, Eva and Langhauser, Friederike and Hopp, Sarah and Hennig, Nelli and Meuth, Sven G. and Nolte, Marc W. and Sir{\´e}n, Anna-Leena and Kleinschnitz, Christoph}, title = {C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation}, series = {Frontiers in Cellular Neuroscience}, volume = {8}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2014.00269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119263}, pages = {269}, year = {2014}, abstract = {Traumatic brain injury (TBI) induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 h. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 h after cryolesion reduced lesion volumes by ~75\% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted anti-inflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings.}, language = {en} } @article{NiklassStoyanovGarzetal.2014, author = {Niklass, Solveig and Stoyanov, Stoyan and Garz, Cornelia and Bueche, Celine Z. and Mencl, Stine and Reymann, Klaus and Heinze, Hans-Jochen and Carare, Roxana O. and Kleinschnitz, Christoph and Schreiber, Stefanie}, title = {Intravital imaging in spontaneously hypertensive stroke-prone rats-a pilot study}, series = {Experimental \& Translational Stroke Medicine}, volume = {6}, journal = {Experimental \& Translational Stroke Medicine}, doi = {10.1186/2040-7378-6-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121353}, pages = {1}, year = {2014}, abstract = {Background There is growing evidence that endothelial failure and subsequent blood brain barrier (BBB) breakdown initiate cerebral small vessel disease (CSVD) pathology. In spontaneously hypertensive stroke-prone rats (SHRSP) endothelial damage is indicated by intraluminal accumulations of erythrocytes (erythrocyte thrombi) that are not observed with current magnetic resonance imaging techniques. Two-photon microscopy (2 PM) offers the potential for real-time direct detection of the small vasculature. Thus, within this pilot study we investigated the sensitivity of 2 PM to detect erythrocyte thrombi expressing initiating CSVD phenomena in vivo. Methods Eight SHRSP and 13 Wistar controls were used for in vivo imaging and subsequent histology with haematoxylin-eosin (HE). For 2 PM, cerebral blood vessels were labeled by fluorescent Dextran (70 kDa) applied intraorbitally. The correlation between vascular erythrocyte thrombi observed by 2 PM and HE-staining was assessed. Artificial surgical damage and parenchymal Dextran distribution were analyzed postmortem. Results Dextran was distributed within the small vessel walls and co-localized with IgG. Artificial surgical damage was comparable between SHRSP and Wistar controls and mainly affected the small vasculature. In fewer than 20\% of animals there was correlation between erythrocyte thrombi as observed with 2 PM and histologically with HE. Conclusions Contrary to our initial expectations, there was little agreement between intravital 2 PM imaging and histology for the detection of erythrocyte thrombi. Two-photon microscopy is a valuable technique that complements but does not replace the value of conventional histology.}, language = {en} } @article{HohnmannMillesSchinkeetal.2014, author = {Hohnmann, Christopher and Milles, Bianca and Schinke, Michael and Schroeter, Michael and Ulzheimer, Jochen and Kraft, Peter and Kleinschnitz, Christoph and Lehmann, Paul V. and Kuerten, Stefanie}, title = {Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood}, series = {Acta Neuropathologica Communications}, volume = {2}, journal = {Acta Neuropathologica Communications}, number = {138}, doi = {10.1186/s40478-014-0138-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126124}, year = {2014}, abstract = {Introduction B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). Results Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5\%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40\%) with a pattern II and three of 14 patients (21.4\%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95\% confidence interval 1.87-19.77). Conclusions Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.}, language = {en} } @article{RadermacherWinglerKleikersetal.2012, author = {Radermacher, Kim A. and Wingler, Kirstin and Kleikers, Pamela and Altenh{\"o}fer, Sebastian and Hermans, Johannes J. R. and Kleinschnitz, Christoph and Schmidt, Harald H. H. W.}, title = {The 1027th target candidate in stroke: Will NADPH oxidase hold up?}, series = {Experimental and Translational Stroke Medicine}, volume = {4}, journal = {Experimental and Translational Stroke Medicine}, number = {11}, doi = {10.1186/2040-7378-4-11}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124197}, year = {2012}, abstract = {As recently reviewed, 1026 neuroprotective drug candidates in stroke research have all failed on their road towards validation and clinical translation, reasons being quality issues in preclinical research and publication bias. Quality control guidelines for preclinical stroke studies have now been established. However, sufficient understanding of the underlying mechanisms of neuronal death after stroke that could be possibly translated into new therapies is lacking. One exception is the hypothesis that cellular death is mediated by oxidative stress. Oxidative stress is defined as an excess of reactive oxygen species (ROS) derived from different possible enzymatic sources. Among these, NADPH oxidases (NOX1-5) stand out as they represent the only known enzyme family that has no other function than to produce ROS. Based on data from different NOX knockout mouse models in ischemic stroke, the most relevant isoform appears to be NOX4. Here we discuss the state-of-the-art of this target with respect to stroke and open questions that need to be addressed on the path towards clinical translation.}, language = {en} } @article{KleinschnitzLinkerMagnusetal.2015, author = {Kleinschnitz, Christoph and Linker, Ralf A. and Magnus, Tim and Korn, Thomas and Meuth, Sven G.}, title = {Report on the 6th scientific meeting of the "Verein zur F{\"o}rderung des Wissenschaftlichen Nachwuchses in der Neurologie" (NEUROWIND e.V.) held in Motzen, Germany, Oct. 31th - Nov. 2nd, 2014}, series = {Experimental \& Translational Stroke Medicine}, volume = {7}, journal = {Experimental \& Translational Stroke Medicine}, number = {1}, organization = {on behalf of the speakers at the 6'th NEUROWIND e.V. scientific meeting}, doi = {10.1186/s13231-014-0013-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125049}, year = {2015}, abstract = {From October 31th - November 2nd, 2014, the 6th NEUROWIND e.V. meeting was held in Motzen, Brandenburg, Germany. 70 doctoral students and postdocs from over 25 different groups working in German and Swiss university hospitals or research institutes attended the meeting to discuss their latest experiments and findings in the fields of neuroimmunology, neurodegeneration and neurovascular research. The meeting was regarded as a very well organized platform to support research of young investigators in Germany and all participants enjoyed the stimulating environment for lively in depth discussions. According to the major aim of NEUROWIND e.V. to support younger researchers in Germany the 4th NEUROWIND YOUNG SCIENTIST AWARD for experimental neurology was awarded to Michael Breckwoldt on his work in the group of Thomas Misgeld (Institute of Neuronal Cell Biology, Technische Universit{\"a}t M{\"u}nchen, Germany). The successful project was published in Nature Medicine entitled "Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo". This outstanding paper deals with a molecular imaging approach in living mice to optically analyze the role of mitochondrial redox signals in axons in health and disease. The award is endowed with 20.000 Euro sponsored by Merck Serono GmbH, Darmstadt, Germany (unrestricted educational grant). This year's keynote lecture was given by Bernhard Hemmer, Head of the Department of Neurology at the Klinikum rechts der Isar, Technische Universit{\"a}t M{\"u}nchen. Dr. Hemmer highlighted the particular role of B cells and (auto)antibodies in multiple sclerosis (MS). As a new highlight Dr. Urbahns, head of global discovery technologies at Merck research laboratories, gave insights from research practice in the pharmaceutical industry and introduced a shift in the view on present-day drug discovery paradigms.}, language = {en} } @article{AlbertWeissenbergerStetterMeuthetal.2012, author = {Albert-Weissenberger, Christiane and Stetter, Christian and Meuth, Sven G. and G{\"o}bel, Kerstin and Bader, Michael and Sir{\´e}n, Anna-Leena and Kleinschnitz, Christoph}, title = {Blocking of Bradykinin Receptor B1 Protects from Focal Closed Head Injury in Mice by Reducing Axonal Damage and Astroglia Activation}, series = {Journal of Cerebral Blood Flow and Metabolism}, volume = {32}, journal = {Journal of Cerebral Blood Flow and Metabolism}, number = {9}, doi = {10.1038/jcbfm.2012.62}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125903}, pages = {1747-1756}, year = {2012}, abstract = {The two bradykinin receptors B1R and B2R are central components of the kallikrein-kinin system with different expression kinetics and binding characteristics. Activation of these receptors by kinins triggers inflammatory responses in the target organ and in most situations enhances tissue damage. We could recently show that blocking of B1R, but not B2R, protects from cortical cryolesion by reducing inflammation and edema formation. In the present study, we investigated the role of B1R and B2R in a closed head model of focal traumatic brain injury (TBI; weight drop). Increased expression of B1R in the injured hemispheres of wild-type mice was restricted to the later stages after brain trauma, i.e. day 7 (P<0.05), whereas no significant induction could be observed for the B2R (P>0.05). Mice lacking the B1R, but not the B2R, showed less functional deficits on day 3 (P<0.001) and day 7 (P<0.001) compared with controls. Pharmacological blocking of B1R in wild-type mice had similar effects. Reduced axonal injury and astroglia activation could be identified as underlying mechanisms, while inhibition of B1R had only little influence on the local inflammatory response in this model. Inhibition of B1R may become a novel strategy to counteract trauma-induced neurodegeneration.}, language = {en} } @article{AlbertWeissenbergerMenclHoppetal.2014, author = {Albert-Weissenberger, Christiane and Mencl, Stine and Hopp, Sarah and Kleinschnitz, Christoph and Siren, Anna-Leena}, title = {Role of the kallikrein-kinin system in traumatic brain injury}, series = {Frontiers in Cellular Neuroscience}, volume = {8}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2014.00345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118226}, pages = {345}, year = {2014}, abstract = {Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Despite improvements in acute intensive care, there are currently no specific therapies to ameliorate the effects of TBI. Successful therapeutic strategies for TBI should target multiple pathophysiologic mechanisms that occur at different stages of brain injury. The kallikrein-kinin system is a promising therapeutic target for TBI as it mediates key pathologic events of traumatic brain damage, such as edema formation, inflammation, and thrombosis. Selective and specific kinin receptor antagonists and inhibitors of plasma kallikrein and coagulation factor XII have been developed, and have already shown therapeutic efficacy in animal models of stroke and TBI. However, conflicting preclinical evaluation, as well as limited and inconclusive data from clinical trials in TBI, suggests that caution should be taken before transferring observations made in animals to humans. This review summarizes current evidence on the pathologic significance of the kallikrein-kinin system during TBI in animal models and, where available, the experimental findings are compared with human data.}, language = {en} } @article{HohmannMillesSchinkeetal.2014, author = {Hohmann, Christopher and Milles, Bianca and Schinke, Michael and Schroeter, Michael and Ulzheimer, Jochen and Kraft, Peter and Kleinschnitz, Christoph and Lehmann, Paul V. and Kuerten, Stefanie}, title = {Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood}, series = {Acta Neuropathologica Communications}, volume = {2}, journal = {Acta Neuropathologica Communications}, number = {138}, issn = {2051-5960}, doi = {10.1186/s40478-014-0138-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120580}, year = {2014}, abstract = {INTRODUCTION: B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). RESULTS: Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5\%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40\%) with a pattern II and three of 14 patients (21.4\%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95\% confidence interval 1.87-19.77). CONCLUSIONS: Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.}, language = {en} } @article{KraftDrechslerGunrebenetal.2014, author = {Kraft, Peter and Drechsler, Christiane and Gunreben, Ignaz and Nieswandt, Bernhard and Stoll, Guido and Heuschmann, Peter Ulrich and Kleinschnitz, Christoph}, title = {Von Willebrand Factor Regulation in Patients with Acute and Chronic Cerebrovascular Disease: A Pilot, Case-Control Study}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {6}, issn = {1932-6203}, doi = {10.1371/journal.pone.0099851}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119588}, pages = {e99851}, year = {2014}, abstract = {Background and Purpose In animal models, von Willebrand factor (VWF) is involved in thrombus formation and propagation of ischemic stroke. However, the pathophysiological relevance of this molecule in humans, and its potential use as a biomarker for the risk and severity of ischemic stroke remains unclear. This study had two aims: to identify predictors of altered VWF levels and to examine whether VWF levels differ between acute cerebrovascular events and chronic cerebrovascular disease (CCD). Methods A case-control study was undertaken between 2010 and 2013 at our University clinic. In total, 116 patients with acute ischemic stroke (AIS) or transitory ischemic attack (TIA), 117 patients with CCD, and 104 healthy volunteers (HV) were included. Blood was taken at days 0, 1, and 3 in patients with AIS or TIA, and once in CCD patients and HV. VWF serum levels were measured and correlated with demographic and clinical parameters by multivariate linear regression and ANOVA. Results Patients with CCD (158±46\%) had significantly higher VWF levels than HV (113±36\%, P<0.001), but lower levels than AIS/TIA patients (200±95\%, P<0.001). Age, sex, and stroke severity influenced VWF levels (P<0.05). Conclusions VWF levels differed across disease subtypes and patient characteristics. Our study confirms increased VWF levels as a risk factor for cerebrovascular disease and, moreover, suggests that it may represent a potential biomarker for stroke severity, warranting further investigation.}, language = {en} } @article{MinnerupSutherlandBuchanetal.2012, author = {Minnerup, Jens and Sutherland, Brad A. and Buchan, Alastair M. and Kleinschnitz, Christoph}, title = {Neuroprotection for Stroke: Current Status and Future Perspectives}, series = {International Journal of Molecular Science}, volume = {13}, journal = {International Journal of Molecular Science}, number = {9}, doi = {10.3390/ijms130911753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134730}, pages = {11753-11772}, year = {2012}, abstract = {Neuroprotection aims to prevent salvageable neurons from dying. Despite showing efficacy in experimental stroke studies, the concept of neuroprotection has failed in clinical trials. Reasons for the translational difficulties include a lack of methodological agreement between preclinical and clinical studies and the heterogeneity of stroke in humans compared to homogeneous strokes in animal models. Even when the international recommendations for preclinical stroke research, the Stroke Academic Industry Roundtable (STAIR) criteria, were followed, we have still seen limited success in the clinic, examples being NXY-059 and haematopoietic growth factors which fulfilled nearly all the STAIR criteria. However, there are a number of neuroprotective treatments under investigation in clinical trials such as hypothermia and ebselen. Moreover, promising neuroprotective treatments based on a deeper understanding of the complex pathophysiology of ischemic stroke such as inhibitors of NADPH oxidases and PSD-95 are currently evaluated in preclinical studies. Further concepts to improve translation include the investigation of neuroprotectants in multicenter preclinical Phase III-type studies, improved animal models, and close alignment between clinical trial and preclinical methodologies. Future successful translation will require both new concepts for preclinical testing and innovative approaches based on mechanistic insights into the ischemic cascade.}, language = {en} }