@article{FeldheimKesslerFeldheimetal.2022, author = {Feldheim, Jonas and Kessler, Almuth F. and Feldheim, Julia J. and Schulz, Ellina and Wend, David and Lazaridis, Lazaros and Kleinschnitz, Christoph and Glas, Martin and Ernestus, Ralf-Ingo and Brandner, Sebastian and Monoranu, Camelia M. and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Effects of long-term temozolomide treatment on glioblastoma and astrocytoma WHO grade 4 stem-like cells}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms23095238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284417}, year = {2022}, abstract = {Glioblastoma leads to a fatal course within two years in more than two thirds of patients. An essential cornerstone of therapy is chemotherapy with temozolomide (TMZ). The effect of TMZ is counteracted by the cellular repair enzyme O\(^6\)-methylguanine-DNA methyltransferase (MGMT). The MGMT promoter methylation, the main regulator of MGMT expression, can change from primary tumor to recurrence, and TMZ may play a significant role in this process. To identify the potential mechanisms involved, three primary stem-like cell lines (one astrocytoma with the mutation of the isocitrate dehydrogenase (IDH), CNS WHO grade 4 (HGA)), and two glioblastoma (IDH-wildtype, CNS WHO grade 4) were treated with TMZ. The MGMT promoter methylation, migration, proliferation, and TMZ-response of the tumor cells were examined at different time points. The strong effects of TMZ treatment on the MGMT methylated cells were observed. Furthermore, TMZ led to a loss of the MGMT promoter hypermethylation and induced migratory rather than proliferative behavior. Cells with the unmethylated MGMT promoter showed more aggressive behavior after treatment, while HGA cells reacted heterogenously. Our study provides further evidence to consider the potential adverse effects of TMZ chemotherapy and a rationale for investigating potential relationships between TMZ treatment and change in the MGMT promoter methylation during relapse.}, language = {en} } @article{KleinschnitzMenclGarzetal.2013, author = {Kleinschnitz, Christoph and Mencl, Stine and Garz, Cornelia and Niklass, Solveig and Braun, Holger and G{\"o}b, Eva and Homola, Gy{\"o}rgy and Heinze, Hans-Jochen and Reymann, Klaus G. and Schreiber, Stefanie}, title = {Early microvascular dysfunction in cerebral small vessel disease is not detectable on 3.0 Tesla magnetic resonance imaging: a longitudinal study in spontaneously hypertensive stroke-prone rats}, series = {Experimental \& Translational Stroke Medicine}, journal = {Experimental \& Translational Stroke Medicine}, doi = {10.1186/2040-7378-5-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97056}, year = {2013}, abstract = {Background Human cerebral small vessel disease (CSVD) has distinct histopathologic and imaging findings in its advanced stages. In spontaneously hypertensive stroke-prone rats (SHRSP), a well-established animal model of CSVD, we recently demonstrated that cerebral microangiopathy is initiated by early microvascular dysfunction leading to the breakdown of the blood-brain barrier and an activated coagulatory state resulting in capillary and arteriolar erythrocyte accumulations (stases). In the present study, we investigated whether initial microvascular dysfunction and other stages of the pathologic CSVD cascade can be detected by serial magnetic resonance imaging (MRI). Findings Fourteen SHRSP and three control (Wistar) rats (aged 26-44 weeks) were investigated biweekly by 3.0 Tesla (3 T) MRI. After perfusion, brains were stained with hematoxylin-eosin and histology was correlated with MRI data. Three SHRSP developed terminal CSVD stages including cortical, hippocampal, and striatal infarcts and macrohemorrhages, which could be detected consistently by MRI. Corresponding histology showed small vessel thromboses and increased numbers of small perivascular bleeds in the infarcted areas. However, 3 T MRI failed to visualize intravascular erythrocyte accumulations, even in those brain regions with the highest densities of affected vessels and the largest vessels affected by stases, as well as failing to detect small perivascular bleeds. Conclusion Serial MRI at a field strength of 3 T failed to detect the initial microvascular dysfunction and subsequent small perivascular bleeds in SHRSP; only terminal stages of cerebral microangiopathy were reliably detected. Further investigations at higher magnetic field strengths (7 T) using blood- and flow-sensitive sequences are currently underway.}, language = {en} } @article{SchuhmannLanghauserZimmermannetal.2023, author = {Schuhmann, Michael K. and Langhauser, Friederike and Zimmermann, Lena and Bellut, Maximilian and Kleinschnitz, Christoph and Fluri, Felix}, title = {Dimethyl fumarate attenuates lymphocyte infiltration and reduces infarct size in experimental stroke}, series = {International journal of molecular sciences}, volume = {24}, journal = {International journal of molecular sciences}, number = {21}, doi = {10.3390/ijms242115540}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357731}, year = {2023}, abstract = {Ischemic stroke is associated with exacerbated tissue damage caused by the activation of immune cells and the initiation of other inflammatory processes. Dimethyl fumarate (DMF) is known to modulate the immune response, activate antioxidative pathways, and improve the blood-brain barrier (BBB) after stroke. However, the specific impact of DMF on immune cells after cerebral ischemia remains unclear. In our study, male mice underwent transient middle cerebral artery occlusion (tMCAO) for 30 min and received oral DMF (15 mg/kg) or a vehicle immediately after tMCAO, followed by twice-daily administrations for 7 days. Infarct volume was assessed on T2-weighted magnetic resonance images on days 1 and 7 after tMCAO. Brain-infiltrating immune cells (lymphocytes, monocytes) and microglia were quantified using fluorescence-activated cell sorting. DMF treatment significantly reduced infarct volumes and brain edema. On day 1 after tMCAO, DMF-treated mice showed reduced lymphocyte infiltration compared to controls, which was not observed on day 7. Monocyte and microglial cell counts did not differ between groups on either day. In the acute phase of stroke, DMF administration attenuated lymphocyte infiltration, probably due to its stabilizing effect on the BBB. This highlights the potential of DMF as a therapeutic candidate for mitigating immune cell-driven damage in stroke.}, language = {en} } @article{BailNotzRovitusoetal.2017, author = {Bail, Kathrin and Notz, Quirin and Rovituso, Damiano M. and Schampel, Andrea and Wunsch, Marie and Koeniger, Tobias and Schropp, Verena and Bharti, Richa and Scholz, Claus-Juergen and Foerstner, Konrad U. and Kleinschnitz, Christoph and Kuerten, Stefanie}, title = {Differential effects of FTY720 on the B cell compartment in a mouse model of multiple sclerosis.}, series = {Journal of Neuroinflammation}, volume = {14}, journal = {Journal of Neuroinflammation}, number = {148}, doi = {10.1186/s12974-017-0924-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157869}, year = {2017}, abstract = {Background: MP4-induced experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS), which enables targeted research on B cells, currently much discussed protagonists in MS pathogenesis. Here, we used this model to study the impact of the S1P1 receptor modulator FTY720 (fingolimod) on the autoreactive B cell and antibody response both in the periphery and the central nervous system (CNS). Methods: MP4-immunized mice were treated orally with FTY720 for 30 days at the peak of disease or 50 days after EAE onset. The subsequent disease course was monitored and the MP4-specific B cell/antibody response was measured by ELISPOT and ELISA. RNA sequencing was performed to determine any effects on B cell-relevant gene expression. S1P\(_{1}\) receptor expression by peripheral T and B cells, B cell subset distribution in the spleen and B cell infiltration into the CNS were studied by flow cytometry. The formation of B cell aggregates and of tertiary lymphoid organs (TLOs) was evaluated by histology and immunohistochemistry. Potential direct effects of FTY720 on B cell aggregation were studied in vitro. Results: FTY720 significantly attenuated clinical EAE when treatment was initiated at the peak of EAE. While there was a significant reduction in the number of T cells in the blood after FTY720 treatment, B cells were only slightly diminished. Yet, there was evidence for the modulation of B cell receptor-mediated signaling upon FTY720 treatment. In addition, we detected a significant increase in the percentage of B220\(^{+}\) B cells in the spleen both in acute and chronic EAE. Whereas acute treatment completely abrogated B cell aggregate formation in the CNS, the numbers of infiltrating B cells and plasma cells were comparable between vehicle- and FTY720-treated mice. In addition, there was no effect on already developed aggregates in chronic EAE. In vitro B cell aggregation assays suggested the absence of a direct effect of FTY720 on B cell aggregation. However, FTY720 impacted the evolution of B cell aggregates into TLOs. Conclusions: The data suggest differential effects of FTY720 on the B cell compartment in MP4-induced EAE.}, language = {en} } @article{KraftBenzAustinatetal.2010, author = {Kraft, Peter and Benz, Peter Michael and Austinat, Madeleine and Brede, Marc Elmar and Schuh, Kai and Walter, Ulrich and Stoll, Guido and Kleinschnitz, Christoph}, title = {Deficiency of Vasodilator-Stimulated Phosphoprotein (VASP) Increases Blood-Brain-Barrier Damage and Edema Formation after Ischemic Stroke in Mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68522}, year = {2010}, abstract = {Background: Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP) is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification. Methodology/Principal Findings: Focal cerebral ischemia was induced in Vasp2/2 mice and wild-type (WT) littermates by transient middle cerebral artery occlusion (tMCAO). Evan's Blue tracer was applied to visualize the extent of blood-brainbarrier (BBB) damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p,0.05) and edema volumes (1.7 mm360.5 mm3 versus 0.8 mm360.4 mm3; p,0.0001) were significantly enhanced in Vasp2/2 mice compared to controls on day 1 after tMCAO. This was accompanied by a significant increase in infarct size (56.1 mm3617.3 mm3 versus 39.3 mm3610.7 mm3, respectively; p,0.01) and a non significant trend (p.0.05) towards worse neurological outcomes. Conclusion: Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage.}, subject = {Vasodilatator-stimuliertes Phosphoprotein}, language = {en} } @article{KraftSchwarzPochetetal.2010, author = {Kraft, P. and Schwarz, T. and Pochet, L. and Stoll, G. and Kleinschnitz, Christoph}, title = {COU254, a specific 3-carboxamide-coumarin inhibitor of coagulation factor XII, does not protect mice from acute ischemic stroke}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68103}, year = {2010}, abstract = {Background: Anticoagulation is an important means to prevent from acute ischemic stroke but is associated with a significant risk of severe hemorrhages. Previous studies have shown that blood coagulation factor XII (FXII)- deficient mice are protected from pathological thrombus formation during cerebral ischemia without bearing an increased bleeding tendency. Hence, pharmacological blockade of FXII might be a promising and safe approach to prevent acute ischemic stroke and possibly other thromboembolic disorders but pharmacological inhibitors selective over FXII are still lacking. In the present study we investigated the efficacy of COU254, a novel nonpeptidic 3-carboxamide-coumarin that selectively blocks FXII activity, on stroke development and post stroke functional outcome in mice. Methods: C57Bl/6 mice were treated with COU254 (40 mg/kg i.p.) or vehicle and subjected to 60 min transient middle cerebral artery occlusion (tMCAO) using the intraluminal filament method. After 24 h infarct volumes were determined from 2,3,5-Triphenyltetrazoliumchloride(TTC)-stained brain sections and functional scores were assessed. Hematoxylin and eosin (H\&E) staining was used to estimate the extent of neuronal cell damage. Thrombus formation within the infarcted brain areas was analyzed by immunoblot. Results: Infarct volumes and functional outcomes on day 1 after tMCAO did not significantly differ between COU254 pre-treated mice or untreated controls (p > 0.05). Histology revealed extensive ischemic neuronal damage regularly including the cortex and the basal ganglia in both groups. COU254 treatment did not prevent intracerebral fibrin(ogen) formation. Conclusions: COU254 at the given concentration of 40 mg/kg failed to demonstrate efficacy in acute ischemic stroke in this preliminary study. Further preclinical evaluation of 3-carboxamide-coumarins is needed before the antithrombotic potential of this novel class of FXII inhibitors can be finally judged.}, subject = {Schlaganfall}, language = {en} } @article{JariusRuprechtWildemannetal.2012, author = {Jarius, Sven and Ruprecht, Klemens and Wildemann, Brigitte and Kuempfel, Tania and Ringelstein, Marius and Geis, Christian and Kleiter, Ingo and Kleinschnitz, Christoph and Berthele, Achim and Brettschneider, Johannes and Hellwig, Kerstin and Hemmer, Bernhard and Linker, Ralf A. and Lauda, Florian and Hayrettin, Christoph A. and Tumani, Hayrettin and Melms, Arthur and Trebst, Corinna and Stangel, Martin and Marziniak, Martin and Hoffmann, Frank and Schippling, Sven and Faiss, J{\"u}rgen H. and Neuhaus, Oliver and Ettrich, Barbara and Zentner, Christian and Guthke, Kersten and Hofstadt-van Oy, Ulrich and Reuss, Reinhard and Pellkofer, Hannah and Ziemann, Ulf and Kern, Peter and Wandinger, Klaus P. and Bergh, Florian Then and Boettcher, Tobias and Langel, Stefan and Liebetrau, Martin and Rommer, Paulus S. and Niehaus, Sabine and M{\"u}nch, Christoph and Winkelmann, Alexander and Zettl, Uwe K and Metz, Imke and Veauthier, Christian and Sieb, J{\"o}rn P. and Wilke, Christian and Hartung, Hans P. and Aktas, Orhan and Paul, Friedemann}, title = {Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients}, series = {Journal of Neuroinflammation}, volume = {9}, journal = {Journal of Neuroinflammation}, number = {14}, doi = {10.1186/1742-2094-9-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133636}, year = {2012}, abstract = {Background: The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity. Objective: To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus. Methods: Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3\%). Results: Seropositive patients were found to be predominantly female (p < 0.0003), to more often have signs of co-existing autoimmunity (p < 0.00001), and to experience more severe clinical attacks. A visual acuity of <= 0.1 during acute optic neuritis (ON) attacks was more frequent among seropositives (p < 0.002). Similarly, motor symptoms were more common in seropositive patients, the median Medical Research Council scale (MRC) grade worse, and MRC grades <= 2 more frequent, in particular if patients met the 2006 revised criteria (p < 0.005, p < 0.006 and p < 0.01, respectively), the total spinal cord lesion load was higher (p < 0.006), and lesions >= 6 vertebral segments as well as entire spinal cord involvement more frequent (p < 0.003 and p < 0.043). By contrast, bilateral ON at onset was more common in seronegatives (p < 0.007), as was simultaneous ON and myelitis (p < 0.001); accordingly, the time to diagnosis of NMO was shorter in the seronegative group (p < 0.029). The course of disease was more often monophasic in seronegatives (p < 0.008). Seropositives and seronegatives did not differ significantly with regard to age at onset, time to relapse, annualized relapse rates, outcome from relapse (complete, partial, no recovery), annualized EDSS increase, mortality rate, supratentorial brain lesions, brainstem lesions, history of carcinoma, frequency of preceding infections, oligoclonal bands, or CSF pleocytosis. Both the time to relapse and the time to diagnosis was longer if the disease started with ON (p < 0.002 and p < 0.013). Motor symptoms or tetraparesis at first myelitis and > 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome.}, language = {en} } @article{IsraelOhsiekAlMomanietal.2016, author = {Israel, Ina and Ohsiek, Andrea and Al-Momani, Ehab and Albert-Weissenberger, Christiane and Stetter, Christian and Mencl, Stine and Buck, Andreas K. and Kleinschnitz, Christoph and Samnick, Samuel and Sir{\´e}n, Anna-Leena}, title = {Combined [\(^{18}\)F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice}, series = {Journal of Neuroinflammation}, volume = {13}, journal = {Journal of Neuroinflammation}, number = {140}, doi = {10.1186/s12974-016-0604-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146606}, year = {2016}, abstract = {Background Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry. Methods A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo μPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [\(^{18}\)F]DPA-714 was performed on day 1, 7, and 16 and [\(^{18}\)F]FDG-μPET imaging for energy metabolism on days 2-5 after trauma using freshly synthesized radiotracers. Immediately after [\(^{18}\)F]DPA-714-μPET imaging on days 7 and 16, cellular identity of the [\(^{18}\)F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1. Results Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [\(^{18}\)F]DPA-714-μPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [\(^{18}\)F]FDG uptake on days 2-5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [\(^{18}\)F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [\(^{18}\)F]DPA-714 was not increased in autoradiography or in μPET imaging. Conclusions [\(^{18}\)F]DPA-714 uptake in μPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI.}, language = {en} } @article{KraftDrechslerSchuhmannetal.2015, author = {Kraft, Peter and Drechsler, Christiane and Schuhmann, Michael K. and Gunreben, Ignaz and Kleinschnitz, Christoph}, title = {Characterization of Peripheral Immune Cell Subsets in Patients with Acute and Chronic Cerebrovascular Disease: A Case-Control Study}, series = {International Journal of Molecular Science}, volume = {16}, journal = {International Journal of Molecular Science}, number = {10}, doi = {10.3390/ijms161025433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126319}, pages = {25433-25449}, year = {2015}, abstract = {Immune cells (IC) play a crucial role in murine stroke pathophysiology. However, data are limited on the role of these cells in ischemic stroke in humans. We therefore aimed to characterize and compare peripheral IC subsets in patients with acute ischemic stroke/transient ischemic attack (AIS/TIA), chronic cerebrovascular disease (CCD) and healthy volunteers (HV). We conducted a case-control study of patients with AIS/TIA (n = 116) or CCD (n = 117), and HV (n = 104) who were enrolled at the University Hospital W{\"u}rzburg from 2010 to 2013. We determined the expression and quantity of IC subsets in the three study groups and performed correlation analyses with demographic and clinical parameters. The quantity of several IC subsets differed between the AIS/TIA, CCD, and HV groups. Several clinical and demographic variables independently predicted the quantity of IC subsets in patients with AIS/TIA. No significant changes in the quantity of IC subsets occurred within the first three days after AIS/TIA. Overall, these findings strengthen the evidence for a pathophysiologic role of IC in human ischemic stroke and the potential use of IC-based biomarkers for the prediction of stroke risk. A comprehensive description of IC kinetics is crucial to enable the design of targeted treatment strategies.}, language = {en} } @article{RovitusoSchefflerWunschetal.2016, author = {Rovituso, Damiano M. and Scheffler, Laura and Wunsch, Marie and Kleinschnitz, Christoph and D{\"o}rck, Sebastian and Ulzheimer, Jochen and Bayas, Antonios and Steinman, Lawrence and Erg{\"u}n, S{\"u}leyman and Kuerten, Stefanie}, title = {CEACAM1 mediates B cell aggregation in central nervous system autoimmunity}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep29847}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147690}, pages = {29847}, year = {2016}, abstract = {B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1\(^+\) B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain -3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease.}, language = {en} }