@article{LundtKlembtCherotchenkoetal.2016, author = {Lundt, Nils and Klembt, Sebastian and Cherotchenko, Evgeniia and Betzold, Simon and Iff, Oliver and Nalitov, Anton V. and Klaas, Martin and Dietrich, Christof P. and Kavokin, Alexey V. and H{\"o}fling, Sven and Schneider, Christian}, title = {Room-temperature Tamm-plasmon exciton-polaritons with a WSe\(_{2}\) monolayer}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13328}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169470}, year = {2016}, abstract = {Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe\(_{2}\), hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy-momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons.}, language = {en} } @article{WaldherrLundtKlaasetal.2018, author = {Waldherr, Max and Lundt, Nils and Klaas, Martin and Betzold, Simon and Wurdack, Matthias and Baumann, Vasilij and Estrecho, Eliezer and Nalitov, Anton and Cherotchenko, Evgenia and Cai, Hui and Ostrovskaya, Elena A. and Kavokin, Alexey V. and Tongay, Sefaattin and Klembt, Sebastian and H{\"o}fling, Sven and Schneider, Christian}, title = {Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05532-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233280}, year = {2018}, abstract = {Bosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe2, strongly coupled to light in a solid-state resonator. The structure is operated in the regime of collective strong coupling between a Tamm-plasmon resonance, GaAs quantum well excitons, and two-dimensional excitons confined in the monolayer crystal. Polariton condensation in a monolayer crystal manifests by a superlinear increase of emission intensity from the hybrid polariton mode, its density-dependent blueshift, and a dramatic collapse of the emission linewidth, a hallmark of temporal coherence. Importantly, we observe a significant spin-polarization in the injected polariton condensate, a fingerprint for spin-valley locking in monolayer excitons. Our results pave the way towards highly nonlinear, coherent valleytronic devices and light sources.}, language = {en} }