@article{AdolfiDuKneitzetal.2021, author = {Adolfi, Mateus C. and Du, Kang and Kneitz, Susanne and Cabau, C{\´e}dric and Zahm, Margot and Klopp, Christophe and Feron, Romain and Paix{\~a}o, R{\^o}mulo V. and Varela, Eduardo S. and de Almeida, Fernanda L. and de Oliveira, Marcos A. and N{\´o}brega, Rafael H. and Lopez-Roques, C{\´e}line and Iampietro, Carole and Lluch, J{\´e}r{\^o}me and Kloas, Werner and Wuertz, Sven and Schaefer, Fabian and St{\"o}ck, Matthias and Guiguen, Yann and Schartl, Manfred}, title = {A duplicated copy of id2b is an unusual sex-determining candidate gene on the Y chromosome of arapaima (Arapaima gigas)}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-01066-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265672}, year = {2021}, abstract = {Arapaima gigas is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified id2bbY, a duplicated copy of the inhibitor of DNA binding 2b (id2b) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for id2bbY was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog, id2ba, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm id2bbY as a prime candidate for the master sex-determiner. Acting through the TGF beta signaling pathway, id2bbY from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes.}, language = {en} } @article{AdolfiHerpinMartinezBengocheaetal.2021, author = {Adolfi, Mateus C. and Herpin, Amaury and Martinez-Bengochea, Anabel and Kneitz, Susanne and Regensburger, Martina and Grunwald, David J. and Schartl, Manfred}, title = {Crosstalk Between Retinoic Acid and Sex-Related Genes Controls Germ Cell Fate and Gametogenesis in Medaka}, series = {Frontiers in Cell and Developmental Biology}, volume = {8}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2020.613497}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222669}, year = {2021}, abstract = {Sex determination (SD) is a highly diverse and complex mechanism. In vertebrates, one of the first morphological differences between the sexes is the timing of initiation of the first meiosis, where its initiation occurs first in female and later in male. Thus, SD is intimately related to the responsiveness of the germ cells to undergo meiosis in a sex-specific manner. In some vertebrates, it has been reported that the timing for meiosis entry would be under control of retinoic acid (RA), through activation of Stra8. In this study, we used a fish model species for sex determination and lacking the stra8 gene, the Japanese medaka (Oryzias latipes), to investigate the connection between RA and the sex determination pathway. Exogenous RA treatments act as a stress factor inhibiting germ cell differentiation probably by activation of dmrt1a and amh. Disruption of the RA degrading enzyme gene cyp26a1 induced precocious meiosis and oogenesis in embryos/hatchlings of female and even some males. Transcriptome analyzes of cyp26a1-/-adult gonads revealed upregulation of genes related to germ cell differentiation and meiosis, in both ovaries and testes. Our findings show that germ cells respond to RA in a stra8 independent model species. The responsiveness to RA is conferred by sex-related genes, restricting its action to the sex differentiation period in both sexes.}, language = {en} } @article{AnelliOrdasKneitzetal.2018, author = {Anelli, Viviana and Ordas, Anita and Kneitz, Susanne and Sagredo, Leonel Munoz and Gourain, Victor and Schartl, Manfred and Meijer, Annemarie H. and Mione, Marina}, title = {Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression}, series = {Frontiers in Genetics}, volume = {9}, journal = {Frontiers in Genetics}, number = {675}, issn = {1664-8021}, doi = {10.3389/fgene.2018.00675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196963}, year = {2018}, abstract = {Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc\&acc=GSE37015.}, language = {en} } @article{BartlScholzHinterbergeretal.2011, author = {Bartl, Jasmin and Scholz, Claus-J{\"u}rgen and Hinterberger, Margareta and Jungwirth, Susanne and Wichart, Ildiko and Rainer, Michael K. and Kneitz, Susanne and Danielczyk, Walter and Tragl, Karl H. and Fischer, Peter and Riederer, Peter and Gr{\"u}nblatt, Edna}, title = {Disorder-specific effects of polymorphisms at opposing ends of the Insulin Degrading Enzymegene}, series = {BMC Medical Genetics}, volume = {12}, journal = {BMC Medical Genetics}, number = {151}, doi = {10.1186/1471-2350-12-15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137744}, year = {2011}, abstract = {Background Insulin-degrading enzyme (IDE) is the ubiquitously expressed enzyme responsible for insulin and amyloid beta (Aβ) degradation. IDE gene is located on chromosome region 10q23-q25 and exhibits a well-replicated peak of linkage with Type 2 diabetes mellitus (T2DM). Several genetic association studies examined IDE gene as a susceptibility gene for Alzheimer's disease (AD), however with controversial results. Methods We examined associations of three IDE polymorphisms (IDE2, rs4646953; IDE7, rs2251101 and IDE9, rs1887922) with AD, Aβ42 plasma level and T2DM risk in the longitudinal Vienna Transdanube Aging (VITA) study cohort. Results The upstream polymorphism IDE2 was found to influence AD risk and to trigger the Aβ42 plasma level, whereas the downstream polymorphism IDE7 modified the T2DM risk; no associations were found for the intronic variant IDE9. Conclusions Based on our SNP and haplotype results, we delineate the model that IDE promoter and 3' untranslated region/downstream variation may have different effects on IDE expression, presumably a relevant endophenotype with disorder-specific effects on AD and T2DM susceptibility.}, language = {en} } @article{BeyrichLoefflerKobsaretal.2011, author = {Beyrich, Claudia and L{\"o}ffler, J{\"u}rgen and Kobsar, Anna and Speer, Christian P. and Kneitz, Susanne and Eigenthaler, Martin}, title = {Infection of Human Coronary Artery Endothelial Cells by Group B Streptococcus Contributes to Dysregulation of Apoptosis, Hemostasis, and Innate Immune Responses [Research Article]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68834}, year = {2011}, abstract = {Early onset sepsis due to group B streptococcus leads to neonatal morbidity, increased mortality, and long-term neurological deficencies. Interaction between septicemic GBS and confluent monolayers of human coronary artery endothelial cells (HCAECs) was analyzed by genome wide expression profiling. In total, 124 genes were differentially expressed (89 upregulated, 35 downregulated) based on a more than 3-fold difference to control HCAEC. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, infection, and inflammation. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real-time RT-PCR assay (granulocy te chemotactic protein 2), ELISA (urokinase, cyclooxygenase 2, granulocyte chemotactic protein 1), and western blotting (Heme oxygenase1, BCL2 interacting protein) at various time points between 4 and 24 hours. These results indicate that GBS infection might influence signalling pathways leading to impaired function of the innate immune system and hemorrhagic and inflammatory complications during GBS sepsis.}, subject = {Medizin}, language = {en} } @article{DedukhDaCruzKneitzetal.2022, author = {Dedukh, Dmitrij and Da Cruz, Irene and Kneitz, Susanne and Marta, Anatolie and Ormanns, Jenny and Tichop{\´a}d, Tom{\´a}š and Lu, Yuan and Alsheimer, Manfred and Janko, Karel and Schartl, Manfred}, title = {Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa}, series = {Chromosome Research}, volume = {30}, journal = {Chromosome Research}, number = {4}, doi = {10.1007/s10577-022-09708-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325128}, pages = {443-457}, year = {2022}, abstract = {Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes.}, language = {en} } @article{DeekenGohlkeScholzetal.2013, author = {Deeken, Rosalia and Gohlke, Jochen and Scholz, Claus-Juergen and Kneitz, Susanne and Weber, Dana and Fuchs, Joerg and Hedrich, Rainer}, title = {DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors}, series = {PLoS Genetics}, journal = {PLoS Genetics}, doi = {10.1371/journal.pgen.1003267}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96318}, year = {2013}, abstract = {Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors.}, language = {en} } @article{DuWuertzAdolfietal.2019, author = {Du, Kang and Wuertz, Sven and Adolfi, Mateus and Kneitz, Susanne and St{\"o}ck, Matthias and Oliveira, Marcos and N{\´o}brega, Rafael and Ormanns, Jenny and Kloas, Werner and Feron, Romain and Klopp, Christophe and Parrinello, Hugues and Journot, Laurent and He, Shunping and Postlethwait, John and Meyer, Axel and Guiguen, Yann and Schartl, Manfred}, title = {The genome of the arapaima (Arapaima gigas) provides insights into gigantism, fast growth and chromosomal sex determination system}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-41457-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201333}, pages = {5293}, year = {2019}, abstract = {We have sequenced the genome of the largest freshwater fish species of the world, the arapaima. Analysis of gene family dynamics and signatures of positive selection identified genes involved in the specific adaptations and unique features of this iconic species, in particular it's large size and fast growth. Genome sequences from both sexes combined with RAD-tag analyses from other males and females led to the isolation of male-specific scaffolds and supports an XY sex determination system in arapaima. Whole transcriptome sequencing showed that the product of the gland-like secretory organ on the head surface of males and females may not only provide nutritional fluid for sex-unbiased parental care, but that the organ itself has a more specific function in males, which engage more in parental care.}, language = {en} } @article{EndresKneitzOrthetal.2016, author = {Endres, Marcel and Kneitz, Susanne and Orth, Martin F. and Perera, Ruwan K. and Zernecke, Alma and Butt, Elke}, title = {Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1)}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {39}, doi = {10.18632/oncotarget.11720}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176920}, pages = {64244-64259}, year = {2016}, abstract = {The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines. By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines. In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown. Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression. The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies.}, language = {en} } @article{HeisigWeberEnglbergeretal.2012, author = {Heisig, Julia and Weber, David and Englberger, Eva and Winkler, Anja and Kneitz, Susanne and Sung, Wing-Kin and Wolf, Elmar and Eilers, Martin and Wei, Chia-Lin and Gessler, Manfred}, title = {Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75341}, year = {2012}, abstract = {HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an Ebox motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.}, subject = {Biologie}, language = {en} }