@article{LangenhorstGogishviliRibechinietal.2012, author = {Langenhorst, Daniela and Gogishvili, Tea and Ribechini, Eliana and Kneitz, Susanne and McPherson, Kirsty and Lutz, Manfred B. and H{\"u}nig, Thomas}, title = {Sequential induction of effector function, tissue migration and cell death during polyclonal activation of mouse regulatory T-cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76009}, year = {2012}, abstract = {The ability of CD4+Foxp3+ regulatory T-cells (Treg) to produce interleukin (IL)-10 is important for the limitation of inflammation at environmental interfaces like colon or lung. Under steady state conditions, however, few Tregs produce IL-10 ex vivo. To investigate the origin and fate of IL-10 producing Tregs we used a superagonistic mouse anti-mouse CD28 mAb (CD28SA) for polyclonal in vivo stimulation of Tregs, which not only led to their numeric expansion but also to a dramatic increase in IL-10 production. IL-10 secreting Tregs strongly upregulated surface receptors associated with suppressive function as compared to non-producing Tregs. Furthermore, polyclonally expanding Tregs shifted their migration receptor pattern after activation from a CCR7+CCR52 lymph node-seeking to a CCR72CCR5+ inflammationseeking phenotype, explaining the preferential recruitment of IL-10 producers to sites of ongoing immune responses. Finally, we observed that IL-10 producing Tregs from CD28SA stimulated mice were more apoptosis-prone in vitro than their IL-10 negative counterparts. These findings support a model where prolonged activation of Tregs results in terminal differentiation towards an IL-10 producing effector phenotype associated with a limited lifespan, implicating built-in termination of immunosuppression.}, subject = {Medizin}, language = {en} } @article{SilvaVilchesPletinckxLohnertetal.2017, author = {Silva-Vilches, Cinthia and Pletinckx, Katrien and Lohnert, Miriam and Pavlovic, Vladimir and Ashour, Diyaaeldin and John, Vini and Vendelova, Emilia and Kneitz, Susanne and Zhou, Jie and Chen, Rena and Reinheckel, Thomas and Mueller, Thomas D. and Bodem, Jochen and Lutz, Manfred B.}, title = {Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0178114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158244}, pages = {e0178114}, year = {2017}, abstract = {Immature or semi-mature dendritic cells (DCs) represent tolerogenic maturation stages that can convert naive T cells into Foxp3\(^{+}\) induced regulatory T cells (iTreg). Here we found that murine bone marrow-derived DCs (BM-DCs) treated with cholera toxin (CT) matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CT\(^{hi}\), CT\(^{lo}\)) or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β). Only DCs matured under CT\(^{hi}\) conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CT\(^{lo}\)- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3\(^{+}\) iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CT\(^{lo}\)- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE) by inducing Foxp3\(^{+}\) Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae.}, language = {en} }