@article{VerghoKneitzKalogirouetal.2014, author = {Vergho, Daniel Claudius and Kneitz, Susanne and Kalogirou, Charis and Burger, Maximilian and Krebs, Markus and Rosenwald, Andreas and Spahn, Martin and L{\"o}ser, Andreas and Kocot, Arkadius and Riedmiller, Hubertus and Kneitz, Burkhard}, title = {Impact of miR-21, miR-126 and miR-221 as Prognostic Factors of Clear Cell Renal Cell Carcinoma with Tumor Thrombus of the Inferior Vena Cava}, doi = {10.1371/journal.pone.0109877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113633}, year = {2014}, abstract = {Clear cell renal cell carcinoma (ccRCC) characterized by a tumor thrombus (TT) extending into the inferior vena cava (IVC) generally indicates poor prognosis. Nevertheless, the risk for tumor recurrence after nephrectomy and thrombectomy varies. An applicable and accurate prediction system to select ccRCC patients with TT of the IVC (ccRCC/TT) at high risk after nephrectomy is urgently needed, but has not been established up to now. To our knowledge, a possible role of microRNAs (miRs) for the development of ccRCC/TT or their impact as prognostic markers in ccRCC/TT has not been explored yet. Therefore, we analyzed the expression of the previously described onco-miRs miR-200c, miR-210, miR-126, miR-221, let-7b, miR-21, miR-143 and miR-141 in a study collective of 74 ccRCC patients. Using the expression profiles of these eight miRs we developed classification systems that accurately differentiate ccRCC from non-cancerous renal tissue and ccRCC/TT from tumors without TT. In the subgroup of 37 ccRCC/TT cases we found that miR-21, miR-126, and miR-221 predicted cancer related death (CRD) accurately and independently from other clinico-pathological features. Furthermore, a combined risk score based on the expression of miR-21, miR-126 and miR-221 was developed and showed high sensitivity and specificity to predict cancer specific survival (CSS) in ccRCC/TT. Using the combined risk score we were able to classify ccRCC/TT patients correctly into high and low risk cases. The risk stratification by the combined risk score (CRS) will benefit from further cohort validation and might have potential for clinical application as a molecular prediction system to identify high- risk ccRCC/TT patients.}, language = {en} } @article{BeyrichLoefflerKobsaretal.2011, author = {Beyrich, Claudia and L{\"o}ffler, J{\"u}rgen and Kobsar, Anna and Speer, Christian P. and Kneitz, Susanne and Eigenthaler, Martin}, title = {Infection of Human Coronary Artery Endothelial Cells by Group B Streptococcus Contributes to Dysregulation of Apoptosis, Hemostasis, and Innate Immune Responses [Research Article]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68834}, year = {2011}, abstract = {Early onset sepsis due to group B streptococcus leads to neonatal morbidity, increased mortality, and long-term neurological deficencies. Interaction between septicemic GBS and confluent monolayers of human coronary artery endothelial cells (HCAECs) was analyzed by genome wide expression profiling. In total, 124 genes were differentially expressed (89 upregulated, 35 downregulated) based on a more than 3-fold difference to control HCAEC. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, infection, and inflammation. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real-time RT-PCR assay (granulocy te chemotactic protein 2), ELISA (urokinase, cyclooxygenase 2, granulocyte chemotactic protein 1), and western blotting (Heme oxygenase1, BCL2 interacting protein) at various time points between 4 and 24 hours. These results indicate that GBS infection might influence signalling pathways leading to impaired function of the innate immune system and hemorrhagic and inflammatory complications during GBS sepsis.}, subject = {Medizin}, language = {en} } @article{FranchiniJonesXiongetal.2018, author = {Franchini, Paolo and Jones, Julia C. and Xiong, Peiwen and Kneitz, Susanne and Gompert, Zachariah and Warren, Wesley C. and Walter, Ronald B. and Meyer, Axel and Schartl, Manfred}, title = {Long-term experimental hybridisation results in the evolution of a new sex chromosome in swordtail fish}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07648-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228396}, year = {2018}, abstract = {The remarkable diversity of sex determination mechanisms known in fish may be fuelled by exceptionally high rates of sex chromosome turnovers or transitions. However, the evolutionary causes and genomic mechanisms underlying this variation and instability are yet to be understood. Here we report on an over 30-year evolutionary experiment in which we tested the genomic consequences of hybridisation and selection between two Xiphophorus fish species with different sex chromosome systems. We find that introgression and imposing selection for pigmentation phenotypes results in the retention of an unexpectedly large maternally derived genomic region. During the hybridisation process, the sex-determining region of the X chromosome from one parental species was translocated to an autosome in the hybrids leading to the evolution of a new sex chromosome. Our results highlight the complexity of factors contributing to patterns observed in hybrid genomes, and we experimentally demonstrate that hybridisation can catalyze rapid evolution of a new sex chromosome.}, language = {en} } @article{SilvaVilchesPletinckxLohnertetal.2017, author = {Silva-Vilches, Cinthia and Pletinckx, Katrien and Lohnert, Miriam and Pavlovic, Vladimir and Ashour, Diyaaeldin and John, Vini and Vendelova, Emilia and Kneitz, Susanne and Zhou, Jie and Chen, Rena and Reinheckel, Thomas and Mueller, Thomas D. and Bodem, Jochen and Lutz, Manfred B.}, title = {Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0178114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158244}, pages = {e0178114}, year = {2017}, abstract = {Immature or semi-mature dendritic cells (DCs) represent tolerogenic maturation stages that can convert naive T cells into Foxp3\(^{+}\) induced regulatory T cells (iTreg). Here we found that murine bone marrow-derived DCs (BM-DCs) treated with cholera toxin (CT) matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CT\(^{hi}\), CT\(^{lo}\)) or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β). Only DCs matured under CT\(^{hi}\) conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CT\(^{lo}\)- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3\(^{+}\) iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CT\(^{lo}\)- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE) by inducing Foxp3\(^{+}\) Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae.}, language = {en} } @article{JazbutyteFiedlerKneitzetal.2012, author = {Jazbutyte, Virginija and Fiedler, Jan and Kneitz, Susanne and Galuppo, Paolo and Just, Annette and Holzmann, Angelika and Bauersachs, Johann and Thum, Thomas}, title = {MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart}, series = {AGE}, volume = {35}, journal = {AGE}, number = {3}, doi = {10.1007/s11357-012-9407-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126745}, pages = {747-762}, year = {2012}, abstract = {MicroRNAs (miRs) are small non- coding RNA molecules controlling a plethora of biological processes such as development, cellular survival and senescence. We here determined miRs differentially regulated during cardiac postnatal development and aging. Cardiac function, morphology and miR expression profiles were determined in neonatal, 4 weeks, 6 months and 19 months old normotensive male healthy C57/Bl6N mice. MiR-22 was most prominently upregulated during cardiac aging. Cardiac expression of its bioinformatically predicted target mimecan (osteoglycin, OGN) was gradually decreased with advanced age. Luciferase reporter assays validated mimecan as a bona fide miR-22 target. Both, miR-22 and its target mimecan were co- expressed in cardiac fibroblasts and smooth muscle cells. Functionally, miR-22 overexpression induced cellular senescence and promoted migratory activity of cardiac fibroblasts. Small interference RNA-mediated silencing of mimecan in cardiac fibroblasts mimicked the miR-22-mediated effects. Rescue experiments revealed that the effects of miR-22 on cardiac fibroblasts were only partially mediated by mimecan. In conclusion, miR-22 upregulation in the aging heart contributed at least partly to accelerated cardiac fibroblast senescence and increased migratory activity. Our results suggest an involvement of miR-22 in age-associated cardiac changes, such as cardiac fibrosis.}, language = {en} } @article{KneitzKalogirouSpahnetal.2013, author = {Kneitz, Burkhard and Kalogirou, Charis and Spahn, Martin and Krebs, Markus and Joniau, Steven and Lerut, Evelyne and Burger, Maximilian and Scholz, Claus-J{\"u}rgen and Kneitz, Susanne and Riedmiller, Hubertus}, title = {MiR-205 Is Progressively Down-Regulated in Lymph Node Metastasis but Fails as a Prognostic Biomarker in High-Risk Prostate Cancer}, series = {International Journal of Molecular Sciences}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms141121414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97321}, year = {2013}, abstract = {The treatment of high-risk prostate cancer (HRPCa) is a tremendous challenge for uro-oncologists. The identification of predictive moleculobiological markers allowing risk assessment of lymph node metastasis and systemic progression is essential in establishing effective treatment. In the current study, we investigate the prognostic potential of miR-205 in HRPCa study and validation cohorts, setting defined clinical endpoints for both. We demonstrate miR-205 to be significantly down-regulated in over 70\% of the HRPCa samples analysed and that reconstitution of miR-205 causes inhibition of proliferation and invasiveness in prostate cancer (PCa) cell lines. Additionally, miR-205 is increasingly down-regulated in lymph node metastases compared to the primary tumour indicating that miR-205 plays a role in migration of PCa cells from the original location into extraprostatic tissue. Nevertheless, down-regulation of miR-205 in primary PCa was not correlated to the synchronous presence of metastasis and failed to predict the outcome for HRPCa patients. Moreover, we found a tendency for miR-205 up-regulation to correlate with an adverse outcome of PCa patients suggesting a pivotal role of miR-205 in tumourigenesis. Overall, we showed that miR-205 is involved in the development and metastasis of PCa, but failed to work as a useful clinical biomarker in HRPCa. These findings might have implications for the use of miR-205 as a prognostic or therapeutic target in HRPCa.}, language = {en} } @article{KrebsBehrmannKalogirouetal.2019, author = {Krebs, Markus and Behrmann, Christoph and Kalogirou, Charis and Sokolakis, Ioannis and Kneitz, Susanne and Kruithof-de Julio, Marianna and Zoni, Eugenio and Rech, Anne and Schilling, Bastian and K{\"u}bler, Hubert and Spahn, Martin and Kneitz, Burkhard}, title = {miR-221 Augments TRAIL-mediated apoptosis in prostate cancer cells by inducing endogenous TRAIL expression and targeting the functional repressors SOCS3 and PIK3R1}, series = {BioMed Research International}, volume = {2019}, journal = {BioMed Research International}, doi = {10.1155/2019/6392748}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202480}, pages = {6392748}, year = {2019}, abstract = {miR-221 is regarded as an oncogene in many malignancies, and miR-221-mediated resistance towards TRAIL was one of the first oncogenic roles shown for this small noncoding RNA. In contrast, miR-221 is downregulated in prostate cancer (PCa), thereby implying a tumour suppressive function. By using proliferation and apoptosis assays, we show a novel feature of miR-221 in PCa cells: instead of inducing TRAIL resistance, miR-221 sensitized cells towards TRAIL-induced proliferation inhibition and apoptosis induction. Partially responsible for this effect was the interferon-mediated gene signature, which among other things contained an endogenous overexpression of the TRAIL encoding gene TNFSF10. This TRAIL-friendly environment was provoked by downregulation of the established miR-221 target gene SOCS3. Moreover, we introduced PIK3R1 as a target gene of miR-221 in PCa cells. Proliferation assays showed that siRNA-mediated downregulation of SOCS3 and PIK3R1 mimicked the effect of miR-221 on TRAIL sensitivity. Finally, Western blotting experiments confirmed lower amounts of phospho-Akt after siRNA-mediated downregulation of PIK3R1 in PC3 cells. Our results further support the tumour suppressing role of miR-221 in PCa, since it sensitises PCa cells towards TRAIL by regulating the expression of the oncogenes SOCS3 and PIK3R1. Given the TRAIL-inhibiting effect of miR-221 in various cancer entities, our results suggest that the influence of miR-221 on TRAIL-mediated apoptosis is highly context- and entity-dependent.}, language = {en} } @article{KrebsSolimandoKalogirouetal.2020, author = {Krebs, Markus and Solimando, Antonio Giovanni and Kalogirou, Charis and Marquardt, Andr{\´e} and Frank, Torsten and Sokolakis, Ioannis and Hatzichristodoulou, Georgios and Kneitz, Susanne and Bargou, Ralf and K{\"u}bler, Hubert and Schilling, Bastian and Spahn, Martin and Kneitz, Burkhard}, title = {miR-221-3p Regulates VEGFR2 Expression in High-Risk Prostate Cancer and Represents an Escape Mechanism from Sunitinib In Vitro}, series = {Journal of Clinical Medicine}, volume = {9}, journal = {Journal of Clinical Medicine}, number = {3}, issn = {2077-0383}, doi = {10.3390/jcm9030670}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203168}, year = {2020}, abstract = {Downregulation of miR-221-3p expression in prostate cancer (PCa) predicted overall and cancer-specific survival of high-risk PCa patients. Apart from PCa, miR-221-3p expression levels predicted a response to tyrosine kinase inhibitors (TKI) in clear cell renal cell carcinoma (ccRCC) patients. Since this role of miR-221-3p was explained with a specific targeting of VEGFR2, we examined whether miR-221-3p regulated VEGFR2 in PCa. First, we confirmed VEGFR2/KDR as a target gene of miR-221-3p in PCa cells by applying Luciferase reporter assays and Western blotting experiments. Although VEGFR2 was mainly downregulated in the PCa cohort of the TCGA (The Cancer Genome Atlas) database, VEGFR2 was upregulated in our high-risk PCa cohort (n = 142) and predicted clinical progression. In vitro miR-221-3p acted as an escape mechanism from TKI in PC3 cells, as displayed by proliferation and apoptosis assays. Moreover, we confirmed that Sunitinib induced an interferon-related gene signature in PC3 cells by analyzing external microarray data and by demonstrating a significant upregulation of miR-221-3p/miR-222-3p after Sunitinib exposure. Our findings bear a clinical perspective for high-risk PCa patients with low miR-221-3p levels since this could predict a favorable TKI response. Apart from this therapeutic niche, we identified a partially oncogenic function of miR-221-3p as an escape mechanism from VEGFR2 inhibition.}, language = {en} } @article{FetivaLissGertzmannetal.2023, author = {Fetiva, Maria Camila and Liss, Franziska and Gertzmann, D{\"o}rthe and Thomas, Julius and Gantert, Benedikt and Vogl, Magdalena and Sira, Nataliia and Weinstock, Grit and Kneitz, Susanne and Ade, Carsten P. and Gaubatz, Stefan}, title = {Oncogenic YAP mediates changes in chromatin accessibility and activity that drive cell cycle gene expression and cell migration}, series = {Nucleic Acids Research}, volume = {51}, journal = {Nucleic Acids Research}, number = {9}, doi = {10.1093/nar/gkad107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350218}, pages = {4266-4283}, year = {2023}, abstract = {YAP, the key protein effector of the Hippo pathway, is a transcriptional co-activator that controls the expression of cell cycle genes, promotes cell growth and proliferation and regulates organ size. YAP modulates gene transcription by binding to distal enhancers, but the mechanisms of gene regulation by YAP-bound enhancers remain poorly understood. Here we show that constitutive active YAP5SA leads to widespread changes in chromatin accessibility in untransformed MCF10A cells. Newly accessible regions include YAP-bound enhancers that mediate activation of cycle genes regulated by the Myb-MuvB (MMB) complex. By CRISPR-interference we identify a role for YAP-bound enhancers in phosphorylation of Pol II at Ser5 at MMB-regulated promoters, extending previously published studies that suggested YAP primarily regulates the pause-release step and transcriptional elongation. YAP5SA also leads to less accessible 'closed' chromatin regions, which are not directly YAP-bound but which contain binding motifs for the p53 family of transcription factors. Diminished accessibility at these regions is, at least in part, a consequence of reduced expression and chromatin-binding of the p53 family member ΔNp63 resulting in downregulation of ΔNp63-target genes and promoting YAP-mediated cell migration. In summary, our studies uncover changes in chromatin accessibility and activity that contribute to the oncogenic activities of YAP.}, language = {en} } @article{AnelliOrdasKneitzetal.2018, author = {Anelli, Viviana and Ordas, Anita and Kneitz, Susanne and Sagredo, Leonel Munoz and Gourain, Victor and Schartl, Manfred and Meijer, Annemarie H. and Mione, Marina}, title = {Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression}, series = {Frontiers in Genetics}, volume = {9}, journal = {Frontiers in Genetics}, number = {675}, issn = {1664-8021}, doi = {10.3389/fgene.2018.00675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196963}, year = {2018}, abstract = {Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc\&acc=GSE37015.}, language = {en} }