@article{DonatRotherSchaeferetal.2014, author = {Donat, Ulrike and Rother, Juliane and Sch{\"a}fer, Simon and Hess, Michael and H{\"a}rtl, Barbara and Kober, Christina and Langbein-Laugwitz, Johanna and Stritzker, Jochen and Chen, Nanhai G. and Aguilar, Richard J. and Weibel, Stephanie and Szalay, Alandar A.}, title = {Characterization of Metastasis Formation and Virotherapy in the Human C33A Cervical Cancer Model}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {6}, issn = {1932-6203}, doi = {10.1371/journal.pone.0098533}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119674}, pages = {e98533}, year = {2014}, abstract = {More than 90\% of cancer mortalities are due to cancer that has metastasized. Therefore, it is crucial to intensify research on metastasis formation and therapy. Here, we describe for the first time the metastasizing ability of the human cervical cancer cell line C33A in athymic nude mice after subcutaneous implantation of tumor cells. In this model, we demonstrated a steady progression of lumbar and renal lymph node metastases during tumor development. Besides predominantly occurring lymphatic metastases, we visualized the formation of hematogenous metastases utilizing red fluorescent protein (RFP) expressing C33A-RFP cells. RFP positive cancer cells were found migrating in blood vessels and forming micrometastases in lungs of tumor-bearing mice. Next, we set out to analyze the influence of oncolytic virotherapy in the C33A-RFP model and demonstrated an efficient virus-mediated reduction of tumor size and metastatic burden. These results suggest the C33A-RFP cervical cancer model as a new platform to analyze cancer metastases as well as to test novel treatment options to combat metastases.}, language = {en} } @article{KirscherDeanBenScadengetal.2015, author = {Kirscher, Lorenz and De{\´a}n-Ben, Xos{\´e} Luis and Scadeng, Miriam and Zaremba, Angelika and Zhang, Qian and Kober, Christina and Fehm, Thomas Felix and Razansky, Daniel and Ntziachristos, Vasilis and Stritzker, Jochen and Szalay, Aladar A.}, title = {Doxycycline Inducible Melanogenic Vaccinia Virus as Theranostic Anti-Cancer Agent}, series = {Theranostics}, volume = {5}, journal = {Theranostics}, number = {10}, doi = {10.7150/thno.12533}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124987}, pages = {1045-1057}, year = {2015}, abstract = {We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system.}, language = {en} }