@article{DoerhoeferLammertKraneetal.2013, author = {D{\"o}rh{\"o}fer, Lena and Lammert, Alexander and Krane, Vera and Gorski, Mathias and Banas, Bernhard and Wanner, Christoph and Kr{\"a}mer, Bernhard K. and Heid, Iris M. and B{\"o}ger, Carsten A.}, title = {Study design of DIACORE (DIAbetes COhoRtE) - a cohort study of patients with diabetes mellitus type 2}, series = {BMC Medical Genetics}, volume = {14}, journal = {BMC Medical Genetics}, number = {25}, issn = {1471-2350}, doi = {10.1186/1471-2350-14-25}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122040}, year = {2013}, abstract = {Background: Diabetes mellitus type 2 (DM2) is highly associated with increased risk for chronic kidney disease (CKD), end stage renal disease (ESRD) and cardiovascular morbidity. Epidemiological and genetic studies generate hypotheses for innovative strategies in DM2 management by unravelling novel mechanisms of diabetes complications, which is essential for future intervention trials. We have thus initiated the DIAbetes COhoRtE study (DIACORE). Methods: DIACORE is a prospective cohort study aiming to recruit 6000 patients of self-reported Caucasian ethnicity with prevalent DM2 for at least 10 years of follow-up. Study visits are performed in University-based recruiting clinics in Germany using standard operating procedures. All prevalent DM2 patients in outpatient clinics surrounding the recruiting centers are invited to participate. At baseline and at each 2-year follow-up examination, patients are subjected to a core phenotyping protocol. This includes a standardized online questionnaire and physical examination to determine incident micro-and macrovascular DM2 complications, malignancy and hospitalization, with a primary focus on renal events. Confirmatory outcome information is requested from patient records. Blood samples are obtained for a centrally analyzed standard laboratory panel and for biobanking of aliquots of serum, plasma, urine, mRNA and DNA for future scientific use. A subset of the cohort is subjected to extended phenotyping, e. g. sleep apnea screening, skin autofluorescence measurement, non-mydriatic retinal photography and non-invasive determination of arterial stiffness. Discussion: DIACORE will enable the prospective evaluation of factors involved in DM2 complication pathogenesis using high-throughput technologies in biosamples and genetic epidemiological studies.}, language = {en} } @article{CarstenAGorskiLietal.2011, author = {Carsten A., B{\"o}ger and Gorski, Mathias and Li, Man and Hoffmann, Michael M. and Huang, Chunmei and Yang, Qiong and Teumer, Alexander and Krane, Vera and O'Seaghdha, Conall M. and Kutalik, Zolt{\´a}n and Wichmann, H.-Erich and Haak, Thomas and Boes, Eva and Coassin, Stefan and Coresh, Josef and Kollerits, Barbara and Haun, Margot and Paulweber, Bernhard and K{\"o}ttgen, Anna and Li, Guo and Shlipak, Michael G. and Powe, Neil and Hwang, Shih-Jen and Dehghan, Abbas and Rivadeneira, Fernando and Uitterlinden, Andr{\´e} and Hofman, Albert and Beckmann, Jacques S. and Kr{\"a}mer, Bernhard K. and Witteman, Jacqueline and Bochud, Murielle and Siscovick, David and Rettig, Rainer and Kronenberg, Florian and Wanner, Christoph and Thadhani, Ravi I. and Heid, Iris M. and Fox, Caroline S. and Kao, W.H.}, title = {Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD}, series = {PLoS Genetics}, volume = {7}, journal = {PLoS Genetics}, number = {9}, doi = {10.1371/journal.pgen.1002292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133758}, pages = {e1002292}, year = {2011}, abstract = {Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR < 60ml/min/1.73m(2) at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression.}, language = {en} }