@article{KraftDrechslerSchuhmannetal.2015, author = {Kraft, Peter and Drechsler, Christiane and Schuhmann, Michael K. and Gunreben, Ignaz and Kleinschnitz, Christoph}, title = {Characterization of Peripheral Immune Cell Subsets in Patients with Acute and Chronic Cerebrovascular Disease: A Case-Control Study}, series = {International Journal of Molecular Science}, volume = {16}, journal = {International Journal of Molecular Science}, number = {10}, doi = {10.3390/ijms161025433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126319}, pages = {25433-25449}, year = {2015}, abstract = {Immune cells (IC) play a crucial role in murine stroke pathophysiology. However, data are limited on the role of these cells in ischemic stroke in humans. We therefore aimed to characterize and compare peripheral IC subsets in patients with acute ischemic stroke/transient ischemic attack (AIS/TIA), chronic cerebrovascular disease (CCD) and healthy volunteers (HV). We conducted a case-control study of patients with AIS/TIA (n = 116) or CCD (n = 117), and HV (n = 104) who were enrolled at the University Hospital W{\"u}rzburg from 2010 to 2013. We determined the expression and quantity of IC subsets in the three study groups and performed correlation analyses with demographic and clinical parameters. The quantity of several IC subsets differed between the AIS/TIA, CCD, and HV groups. Several clinical and demographic variables independently predicted the quantity of IC subsets in patients with AIS/TIA. No significant changes in the quantity of IC subsets occurred within the first three days after AIS/TIA. Overall, these findings strengthen the evidence for a pathophysiologic role of IC in human ischemic stroke and the potential use of IC-based biomarkers for the prediction of stroke risk. A comprehensive description of IC kinetics is crucial to enable the design of targeted treatment strategies.}, language = {en} } @article{RuckBittnerAfzalietal.2015, author = {Ruck, Tobias and Bittner, Stefan and Afzali, Ali Maisam and G{\"o}bel, Kerstin and Glumm, Sarah and Kraft, Peter and Sommer, Claudia and Kleinschnitz, Christoph and Preusse, Corinna and Stenzel, Werner and Wiendl, Heinz and Meuth, Sven G.}, title = {The NKG2D-IL-15 signaling pathway contributes to T-cell mediated pathology in inflammatory myopathies}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {41}, doi = {10.18632/oncotarget.6462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136047}, year = {2015}, abstract = {NKG2D is an activating receptor on T cells, which has been implicated in the pathogenesis of autoimmune diseases. T cells are critically involved in idiopathic inflammatory myopathies (IIM) and have been proposed as specific therapeutic targets. However, the mechanisms underlying T cell-mediated progressive muscle destruction in IIM remain to be elucidated. We here determined the involvement of the NKG2D - IL-15 signaling pathway. Primary human myoblasts expressed NKG2D ligands, which were further upregulated upon inflammatory stimuli. In parallel, shedding of the soluble NKG2D ligand MICA (sMICA) decreased upon inflammation potentially diminishing inhibition of NKG2D signaling. Membrane-related expression of IL-15 by myoblasts induced differentiation of naive CD8\(^+\) T cells into highly activated, cytotoxic \(CD8^+NKG2D^{high}\) T cells demonstrating NKG2D-dependent lysis of myoblasts in vitro. \(CD8^+NKG2D^{high}\) T cell frequencies were increased in the peripheral blood of polymyositis (PM) patients and correlated with serum creatinine kinase concentrations, while serum sMICA levels were not significantly changed. In muscle biopsy specimens from PM patients expression of the NKG2D ligand MICA/B was upregulated, IL-15 was expressed by muscle cells, CD68\(^+\) macrophages as well as CD4\(^+\) T cells, and \(CD8^+NKG2D^+\) cells were frequently detected within inflammatory infiltrates arguing for a local signaling circuit in the inflammatory muscle milieu. In conclusion, the NKG2D - IL-15 signaling pathway contributes to progressive muscle destruction in IIM potentially opening new therapeutic avenues.}, language = {en} } @article{KraftDrechslerGunrebenetal.2015, author = {Kraft, Peter and Drechsler, Christiane and Gunreben, Ignaz and Heuschmann, Peter Ulrich and Kleinschnitz, Christoph}, title = {Case-control study of platelet glycoprotein receptor Ib and IIb/IIIa expression in patients with acute and chronic cerebrovascular disease}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0119810}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148806}, pages = {e0119810}, year = {2015}, abstract = {Background Animal models have been instrumental in defining thrombus formation, including the role of platelet surface glycoprotein (GP) receptors, in acute ischemic stroke (AIS). However, the involvement of GP receptors in human ischemic stroke pathophysiology and their utility as biomarkers for ischemic stroke risk and severity requires elucidation. Aims To determine whether platelet GPIb and GPIIb/IIIa receptors are differentially expressed in patients with AIS and chronic cerebrovascular disease (CCD) compared with healthy volunteers (HV) and to identify predictors of GPIb and GPIIb/IIIa expression. Methods This was a case-control study of 116 patients with AIS or transient ischemic attack (TIA), 117 patients with CCD, and 104 HV who were enrolled at our University hospital from 2010 to 2013. Blood sampling was performed once in the CCD and HV groups, and at several time points in patients with AIS or TIA. Linear regression and analysis of variance were used to analyze correlations between platelet GPIb and GPIIb/IIIa receptor numbers and demographic and clinical parameters. Results GPIb and GPIIb/IIIa receptor numbers did not significantly differ between the AIS, CCD, and HV groups. GPIb receptor expression level correlated significantly with the magnitude of GPIIb/IIIa receptor expression and the neutrophil count. In contrast, GPIIb/IIIa receptor numbers were not associated with peripheral immune-cell sub-population counts. Creactive protein was an independent predictor of GPIIb/IIIa (not GPIb) receptor numbers. Conclusions Platelet GPIb and GPIIb/IIIa receptor numbers did not distinguish between patient or control groups in this study, negating their potential use as a biomarker for predicting stroke risk.}, language = {en} }