@article{BeerJoschinskiSastreetal.2017, author = {Beer, Katharina and Joschinski, Jens and Sastre, Alazne Arrazola and Krauss, Jochen and Helfrich-F{\"o}rster, Charlotte}, title = {A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum)}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {14906}, doi = {10.1038/s41598-017-15014-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170020}, year = {2017}, abstract = {Timing seasonal events, like reproduction or diapause, is crucial for the survival of many species. Global change causes phenologies worldwide to shift, which requires a mechanistic explanation of seasonal time measurement. Day length (photoperiod) is a reliable indicator of winter arrival, but it remains unclear how exactly species measure day length. A reference for time of day could be provided by a circadian clock, by an hourglass clock, or, as some newer models suggest, by a damped circadian clock. However, damping of clock outputs has so far been rarely observed. To study putative clock outputs of Acyrthosiphon pisum aphids, we raised individual nymphs on coloured artificial diet, and measured rhythms in metabolic activity in light-dark illumination cycles of 16:08 hours (LD) and constant conditions (DD). In addition, we kept individuals in a novel monitoring setup and measured locomotor activity. We found that A. pisum is day-active in LD, potentially with a bimodal distribution. In constant darkness rhythmicity of locomotor behaviour persisted in some individuals, but patterns were mostly complex with several predominant periods. Metabolic activity, on the other hand, damped quickly. A damped circadian clock, potentially driven by multiple oscillator populations, is the most likely explanation of our results.}, language = {en} } @article{VikukFuchsKrischkeetal.2020, author = {Vikuk, Veronika and Fuchs, Benjamin and Krischke, Markus and Mueller, Martin J. and Rueb, Selina and Krauss, Jochen}, title = {Alkaloid Concentrations of Lolium perenne Infected with Epichlo{\"e} festucae var. lolii with Different Detection Methods—A Re-Evaluation of Intoxication Risk in Germany?}, series = {Journal of Fungi}, volume = {6}, journal = {Journal of Fungi}, number = {3}, issn = {2309-608X}, doi = {10.3390/jof6030177}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213171}, year = {2020}, abstract = {Mycotoxins in agriculturally used plants can cause intoxication in animals and can lead to severe financial losses for farmers. The endophytic fungus Epichlo{\"e} festucae var. lolii living symbiotically within the cool season grass species Lolium perenne can produce vertebrate and invertebrate toxic alkaloids. Hence, an exact quantitation of alkaloid concentrations is essential to determine intoxication risk for animals. Many studies use different methods to detect alkaloid concentrations, which complicates the comparability. In this study, we showed that alkaloid concentrations of individual plants exceeded toxicity thresholds on real world grasslands in Germany, but not on the population level. Alkaloid concentrations on five German grasslands with high alkaloid levels peaked in summer but were also below toxicity thresholds on population level. Furthermore, we showed that alkaloid concentrations follow the same seasonal trend, regardless of whether plant fresh or dry weight was used, in the field and in a common garden study. However, alkaloid concentrations were around three times higher when detected with dry weight. Finally, we showed that alkaloid concentrations can additionally be biased to different alkaloid detection methods. We highlight that toxicity risks should be analyzed using plant dry weight, but concentration trends of fresh weight are reliable.}, language = {en} } @article{KernerKraussMaihoffetal.2023, author = {Kerner, Janika M. and Krauss, Jochen and Maihoff, Fabienne and Bofinger, Lukas and Classen, Alice}, title = {Alpine butterflies want to fly high: Species and communities shift upwards faster than their host plants}, series = {Ecology}, volume = {104}, journal = {Ecology}, number = {1}, doi = {10.1002/ecy.3848}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312015}, year = {2023}, abstract = {Despite sometimes strong codependencies of insect herbivores and plants, the responses of individual taxa to accelerating climate change are typically studied in isolation. For this reason, biotic interactions that potentially limit species in tracking their preferred climatic niches are ignored. Here, we chose butterflies as a prominent representative of herbivorous insects to investigate the impacts of temperature changes and their larval host plant distributions along a 1.4-km elevational gradient in the German Alps. Following a sampling protocol of 2009, we revisited 33 grassland plots in 2019 over an entire growing season. We quantified changes in butterfly abundance and richness by repeated transect walks on each plot and disentangled the direct and indirect effects of locally assessed temperature, site management, and larval and adult food resource availability on these patterns. Additionally, we determined elevational range shifts of butterflies and host plants at both the community and species level. Comparing the two sampled years (2009 and 2019), we found a severe decline in butterfly abundance and a clear upward shift of butterflies along the elevational gradient. We detected shifts in the peak of species richness, community composition, and at the species level, whereby mountainous species shifted particularly strongly. In contrast, host plants showed barely any change, neither in connection with species richness nor individual species shifts. Further, temperature and host plant richness were the main drivers of butterfly richness, with change in temperature best explaining the change in richness over time. We concluded that host plants were not yet hindering butterfly species and communities from shifting upwards. However, the mismatch between butterfly and host plant shifts might become a problem for this very close plant-herbivore relationship, especially toward higher elevations, if butterflies fail to adapt to new host plants. Further, our results support the value of conserving traditional extensive pasture use as a promoter of host plant and, hence, butterfly richness.}, language = {en} } @article{BoetzlKonleKrauss2019, author = {Boetzl, Fabian A. and Konle, Antonia and Krauss, Jochen}, title = {Aphid cards - useful model for assessing predation rates or bias prone nonsense?}, series = {Journal of Applied Entomology}, volume = {144}, journal = {Journal of Applied Entomology}, number = {1-2}, doi = {10.1111/jen.12692}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204798}, pages = {74-80}, year = {2019}, abstract = {Predation on pest organisms is an essential ecosystem function supporting yields in modern agriculture. However, assessing predation rates is intricate, and they can rarely be linked directly to predator densities or functions. We tested whether sentinel prey aphid cards are useful tools to assess predation rates in the field. Therefore, we looked at aphid cards of different sizes on the ground level as well as within the vegetation. Additionally, by trapping ground-dwelling predators, we examined whether obtained predation rates could be linked to predator densities and traits. Predation rates recorded with aphid cards were independent of aphid card size. However, predation rates on the ground level were three times higher than within the vegetation. We found both predatory carabid activity densities as well as community weighted mean body size to be good predictors for predation rates. Predation rates obtained from aphid cards are stable over card type and related to predator assemblages. Aphid cards, therefore, are a useful, efficient method for rapidly assessing the ecosystem function predation. Their use might especially be recommended for assessments on the ground level and when time and resource limitations rule out more elaborate sentinel prey methods using exclosures with living prey animals.}, language = {en} } @article{LeingaertnerHoissKraussetal.2014, author = {Leing{\"a}rtner, Annette and Hoiss, Bernhard and Krauss, Jochen and Steffan-Dewenter, Ingolf}, title = {Combined Effects of Extreme Climatic Events and Elevation on Nutritional Quality and Herbivory of Alpine Plants}, doi = {10.1371/journal.pone.0093881}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112812}, year = {2014}, abstract = {Climatic extreme events can cause the shift or disruption of plant-insect interactions due to altered plant quality, e.g. leaf carbon to nitrogen ratios, and phenology. However, the response of plant-herbivore interactions to extreme events and climatic gradients has been rarely studied, although climatic extremes will increase in frequency and intensity in the future and insect herbivores represent a highly diverse and functionally important group. We set up a replicated climate change experiment along elevational gradients in the German Alps to study the responses of three plant guilds and their herbivory by insects to extreme events (extreme drought, advanced and delayed snowmelt) versus control plots under different climatic conditions on 15 grassland sites. Our results indicate that elevational shifts in CN (carbon to nitrogen) ratios and herbivory depend on plant guild and season. CN ratios increased with altitude for grasses, but decreased for legumes and other forbs. In contrast to our hypotheses, extreme climatic events did not significantly affect CN ratios and herbivory. Thus, our study indicates that nutritional quality of plants and antagonistic interactions with insect herbivores are robust against seasonal climatic extremes. Across the three functional plant guilds, herbivory increased with nitrogen concentrations. Further, increased CN ratios indicate a reduction in nutritional plant quality with advancing season. Although our results revealed no direct effects of extreme climatic events, the opposing responses of plant guilds along elevation imply that competitive interactions within plant communities might change under future climates, with unknown consequences for plant-herbivore interactions and plant community composition.}, language = {en} } @article{DaineseSchneiderKraussetal.2017, author = {Dainese, Matteo and Schneider, Gudrun and Krauss, Jochen and Steffan-Dewenter, Ingolf}, title = {Complementarity among natural enemies enhances pest suppression}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-08316-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158621}, pages = {8172}, year = {2017}, abstract = {Natural enemies have been shown to be effective agents for controlling insect pests in crops. However, it remains unclear how different natural enemy guilds contribute to the regulation of pests and how this might be modulated by landscape context. In a field exclusion experiment in oilseed rape (OSR), we found that parasitoids and ground-dwelling predators acted in a complementary way to suppress pollen beetles, suggesting that pest control by multiple enemies attacking a pest during different periods of its occurrence in the field improves biological control efficacy. The density of pollen beetle significantly decreased with an increased proportion of non-crop habitats in the landscape. Parasitism had a strong effect on pollen beetle numbers in landscapes with a low or intermediate proportion of non-crop habitats, but not in complex landscapes. Our results underline the importance of different natural enemy guilds to pest regulation in crops, and demonstrate how biological control can be strengthened by complementarity among natural enemies. The optimization of natural pest control by adoption of specific management practices at local and landscape scales, such as establishing non-crop areas, low-impact tillage, and temporal crop rotation, could significantly reduce dependence on pesticides and foster yield stability through ecological intensification in agriculture.}, language = {en} } @article{JoschinskiHovestadtKrauss2015, author = {Joschinski, Jens and Hovestadt, Thomas and Krauss, Jochen}, title = {Coping with shorter days: do phenology shifts constrain aphid fitness?}, series = {PeerJ}, volume = {3}, journal = {PeerJ}, number = {e1103}, doi = {10.7717/peerj.1103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148382}, year = {2015}, abstract = {Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual's life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change.}, language = {en} } @article{KraussVikukYoungetal.2020, author = {Krauss, Jochen and Vikuk, Veronika and Young, Carolyn A. and Krischke, Markus and Mueller, Martin J. and Baerenfaller, Katja}, title = {Correction: Krauss, J., et al. Epichlo{\"e} endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe. Microorganisms 2020, 8, 498}, series = {Microorganisms}, volume = {8}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms8101616}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216254}, year = {2020}, abstract = {No abstract available.}, language = {en} } @article{KraussGallenbergerSteffanDewenter2011, author = {Krauss, Jochen and Gallenberger, Iris and Steffan-Dewenter, Ingolf}, title = {Decreased Functional Diversity and Biological Pest Control in Conventional Compared to Organic Crop Fields}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69005}, year = {2011}, abstract = {Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached.}, subject = {Landwirtschaft}, language = {en} } @article{SchenkKraussHolzschuh2018, author = {Schenk, Mariela and Krauss, Jochen and Holzschuh, Andrea}, title = {Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees}, series = {Journal of Animal Ecology}, volume = {87}, journal = {Journal of Animal Ecology}, number = {1}, doi = {10.1111/1365-2656.12694}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228533}, pages = {139-149}, year = {2018}, abstract = {1. Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. 2. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. 3. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3days and (iii) a mismatch of 6days, with bees occurring earlier than flowers in the latter two cases. 4. A mismatch of 6days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3days as under perfect synchronization. However, O.cornuta decreased the number of female offspring, whereas O.bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O.bicornis. 5. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees. Although our results suggest that bees have evolved species-specific strategies to mitigate fitness losses after temporal mismatches, the bees were not able to completely compensate for impacts on their fitness after temporal mismatches with their food resources.}, subject = {pollination}, language = {en} }