@article{KienerChenKrebsetal.2019, author = {Kiener, Mirjam and Chen, Lanpeng and Krebs, Markus and Grosjean, JoČ…l and Klima, Irena and Kalogirou, Charis and Riedmiller, Hubertus and Kneitz, Burkhard and Thalmann, George N. and Snaar-Jagalska, Ewa and Spahn, Martin and Kruithof-de Julio, Marianna and Zoni, Eugenio}, title = {miR-221-5p regulates proliferation and migration in human prostate cancer cells and reduces tumor growth in vivo}, series = {BMC Cancer}, volume = {19}, journal = {BMC Cancer}, doi = {10.1186/s12885-019-5819-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325762}, year = {2019}, abstract = {Background Despite latest advances in prostate cancer (PCa) therapy, PCa remains the third-leading cause of cancer-related death in European men. Dysregulation of microRNAs (miRNAs), small non-coding RNA molecules with gene expression regulatory function, has been reported in all types of epithelial and haematological cancers. In particular, miR-221-5p alterations have been reported in PCa. Methods miRNA expression data was retrieved from a comprehensive publicly available dataset of 218 PCa patients (GSE21036) and miR-221-5p expression levels were analysed. The functional role of miR-221-5p was characterised in androgen- dependent and androgen- independent PCa cell line models (C4-2 and PC-3M-Pro4 cells) by miR-221-5p overexpression and knock-down experiments. The metastatic potential of highly aggressive PC-3M-Pro4 cells overexpressing miR-221-5p was determined by studying extravasation in a zebrafish model. Finally, the effect of miR-221-5p overexpression on the growth of PC-3M-Pro4luc2 cells in vivo was studied by orthotopic implantation in male Balb/cByJ nude mice and assessment of tumor growth. Results Analysis of microRNA expression dataset for human primary and metastatic PCa samples and control normal adjacent benign prostate revealed miR-221-5p to be significantly downregulated in PCa compared to normal prostate tissue and in metastasis compared to primary PCa. Our in vitro data suggest that miR-221-5p overexpression reduced PCa cell proliferation and colony formation. Furthermore, miR-221-5p overexpression dramatically reduced migration of PCa cells, which was associated with differential expression of selected EMT markers. The functional changes of miR-221-5p overexpression were reversible by the loss of miR-221-5p levels, indicating that the tumor suppressive effects were specific to miR-221-5p. Additionally, miR-221-5p overexpression significantly reduced PC-3M-Pro4 cell extravasation and metastasis formation in a zebrafish model and decreased tumor burden in an orthotopic mouse model of PCa. Conclusions Together these data strongly support a tumor suppressive role of miR-221-5p in the context of PCa and its potential as therapeutic target.}, language = {en} }