@article{RovitusoSchefflerWunschetal.2016, author = {Rovituso, Damiano M. and Scheffler, Laura and Wunsch, Marie and Kleinschnitz, Christoph and D{\"o}rck, Sebastian and Ulzheimer, Jochen and Bayas, Antonios and Steinman, Lawrence and Erg{\"u}n, S{\"u}leyman and Kuerten, Stefanie}, title = {CEACAM1 mediates B cell aggregation in central nervous system autoimmunity}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep29847}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147690}, pages = {29847}, year = {2016}, abstract = {B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1\(^+\) B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain -3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease.}, language = {en} } @article{HohnmannMillesSchinkeetal.2014, author = {Hohnmann, Christopher and Milles, Bianca and Schinke, Michael and Schroeter, Michael and Ulzheimer, Jochen and Kraft, Peter and Kleinschnitz, Christoph and Lehmann, Paul V. and Kuerten, Stefanie}, title = {Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood}, series = {Acta Neuropathologica Communications}, volume = {2}, journal = {Acta Neuropathologica Communications}, number = {138}, doi = {10.1186/s40478-014-0138-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126124}, year = {2014}, abstract = {Introduction B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). Results Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5\%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40\%) with a pattern II and three of 14 patients (21.4\%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95\% confidence interval 1.87-19.77). Conclusions Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.}, language = {en} } @article{HohmannMillesSchinkeetal.2014, author = {Hohmann, Christopher and Milles, Bianca and Schinke, Michael and Schroeter, Michael and Ulzheimer, Jochen and Kraft, Peter and Kleinschnitz, Christoph and Lehmann, Paul V. and Kuerten, Stefanie}, title = {Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood}, series = {Acta Neuropathologica Communications}, volume = {2}, journal = {Acta Neuropathologica Communications}, number = {138}, issn = {2051-5960}, doi = {10.1186/s40478-014-0138-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120580}, year = {2014}, abstract = {INTRODUCTION: B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). RESULTS: Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5\%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40\%) with a pattern II and three of 14 patients (21.4\%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95\% confidence interval 1.87-19.77). CONCLUSIONS: Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.}, language = {en} } @article{RovitusoDuffySchroeteretal.2015, author = {Rovituso, Damiano M. and Duffy, Catharina E. and Schroeter, Michael and Kaiser, Claudia C. and Kleinschnitz, Christoph and Bayas, Antonios and Elsner, Rebecca and Kuerten, Stefanie}, title = {The brain antigen-specific B cell response correlates with glatiramer acetate responsiveness in relapsing-remitting multiple sclerosis patients}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {14265}, doi = {10.1038/srep14265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148172}, year = {2015}, abstract = {B cells have only recently begun to attract attention in the immunopathology of multiple sclerosis (MS). Suitable markers for the prediction of treatment success with immunomodulatory drugs are still missing. Here we evaluated the B cell response to brain antigens in n = 34 relapsing-remitting MS (RRMS) patients treated with glatiramer acetate (GA) using the enzyme-linked immunospot technique (ELISPOT). Our data demonstrate that patients can be subdivided into responders that show brain-specific B cell reactivity in the blood and patients without this reactivity. Only in patients that classified as B cell responders, there was a significant positive correlation between treatment duration and the time since last relapse in our study. This correlation was GA-specific because it was absent in a control group that consisted of interferon-\(\beta\) (IFN-\(\beta\))-treated RRMS patients (n = 23). These data suggest that GA has an effect on brain-reactive B cells in a subset of patients and that only this subset benefits from treatment. The detection of brain-reactive B cells is likely to be a suitable tool to identify drug responders.}, language = {en} } @article{GoebelPankratzAsaridouetal.2016, author = {G{\"o}bel, Kerstin and Pankratz, Susann and Asaridou, Chloi-Magdalini and Herrmann, Alexander M. and Bittner, Stefan and Merker, Monika and Ruck, Tobias and Glumm, Sarah and Langhauser, Friederike and Kraft, Peter and Krug, Thorsten F. and Breuer, Johanna and Herold, Martin and Gross, Catharina C. and Beckmann, Denise and Korb-Pap, Adelheid and Schuhmann, Michael K. and Kuerten, Stefanie and Mitroulis, Ioannis and Ruppert, Clemens and Nolte, Marc W. and Panousis, Con and Klotz, Luisa and Kehrel, Beate and Korn, Thomas and Langer, Harald F. and Pap, Thomas and Nieswandt, Bernhard and Wiendl, Heinz and Chavakis, Triantafyllos and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {11626}, doi = {10.1038/ncomms11626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165503}, year = {2016}, abstract = {Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.}, language = {en} } @article{BailNotzRovitusoetal.2017, author = {Bail, Kathrin and Notz, Quirin and Rovituso, Damiano M. and Schampel, Andrea and Wunsch, Marie and Koeniger, Tobias and Schropp, Verena and Bharti, Richa and Scholz, Claus-Juergen and Foerstner, Konrad U. and Kleinschnitz, Christoph and Kuerten, Stefanie}, title = {Differential effects of FTY720 on the B cell compartment in a mouse model of multiple sclerosis.}, series = {Journal of Neuroinflammation}, volume = {14}, journal = {Journal of Neuroinflammation}, number = {148}, doi = {10.1186/s12974-017-0924-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157869}, year = {2017}, abstract = {Background: MP4-induced experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS), which enables targeted research on B cells, currently much discussed protagonists in MS pathogenesis. Here, we used this model to study the impact of the S1P1 receptor modulator FTY720 (fingolimod) on the autoreactive B cell and antibody response both in the periphery and the central nervous system (CNS). Methods: MP4-immunized mice were treated orally with FTY720 for 30 days at the peak of disease or 50 days after EAE onset. The subsequent disease course was monitored and the MP4-specific B cell/antibody response was measured by ELISPOT and ELISA. RNA sequencing was performed to determine any effects on B cell-relevant gene expression. S1P\(_{1}\) receptor expression by peripheral T and B cells, B cell subset distribution in the spleen and B cell infiltration into the CNS were studied by flow cytometry. The formation of B cell aggregates and of tertiary lymphoid organs (TLOs) was evaluated by histology and immunohistochemistry. Potential direct effects of FTY720 on B cell aggregation were studied in vitro. Results: FTY720 significantly attenuated clinical EAE when treatment was initiated at the peak of EAE. While there was a significant reduction in the number of T cells in the blood after FTY720 treatment, B cells were only slightly diminished. Yet, there was evidence for the modulation of B cell receptor-mediated signaling upon FTY720 treatment. In addition, we detected a significant increase in the percentage of B220\(^{+}\) B cells in the spleen both in acute and chronic EAE. Whereas acute treatment completely abrogated B cell aggregate formation in the CNS, the numbers of infiltrating B cells and plasma cells were comparable between vehicle- and FTY720-treated mice. In addition, there was no effect on already developed aggregates in chronic EAE. In vitro B cell aggregation assays suggested the absence of a direct effect of FTY720 on B cell aggregation. However, FTY720 impacted the evolution of B cell aggregates into TLOs. Conclusions: The data suggest differential effects of FTY720 on the B cell compartment in MP4-induced EAE.}, language = {en} } @article{KoenigerBellMifkaetal.2021, author = {Koeniger, Tobias and Bell, Luisa and Mifka, Anika and Enders, Michael and Hautmann, Valentin and Mekala, Subba Rao and Kirchner, Philipp and Ekici, Arif B. and Schulz, Christian and W{\"o}rsd{\"o}rfer, Philipp and Mencl, Stine and Kleinschnitz, Christoph and Erg{\"u}n, S{\"u}leyman and Kuerten, Stefanie}, title = {Bone marrow-derived myeloid progenitors in the leptomeninges of adult mice}, series = {Stem Cells}, volume = {39}, journal = {Stem Cells}, number = {2}, doi = {10.1002/stem.3311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224452}, pages = {227 -- 239}, year = {2021}, abstract = {Although the bone marrow contains most hematopoietic activity during adulthood, hematopoietic stem and progenitor cells can be recovered from various extramedullary sites. Cells with hematopoietic progenitor properties have even been reported in the adult brain under steady-state conditions, but their nature and localization remain insufficiently defined. Here, we describe a heterogeneous population of myeloid progenitors in the leptomeninges of adult C57BL/6 mice. This cell pool included common myeloid, granulocyte/macrophage, and megakaryocyte/erythrocyte progenitors. Accordingly, it gave rise to all major myelo-erythroid lineages in clonogenic culture assays. Brain-associated progenitors persisted after tissue perfusion and were partially inaccessible to intravenous antibodies, suggesting their localization behind continuous blood vessel endothelium such as the blood-arachnoid barrier. Flt3\(^{Cre}\) lineage tracing and bone marrow transplantation showed that the precursors were derived from adult hematopoietic stem cells and were most likely continuously replaced via cell trafficking. Importantly, their occurrence was tied to the immunologic state of the central nervous system (CNS) and was diminished in the context of neuroinflammation and ischemic stroke. Our findings confirm the presence of myeloid progenitors at the meningeal border of the brain and lay the foundation to unravel their possible functions in CNS surveillance and local immune cell production.}, language = {en} } @article{SimonIpekHomolaetal.2018, author = {Simon, Micha and Ipek, Rojda and Homola, Gy{\"o}rgy A. and Rovituso, Damiano M. and Schampel, Andrea and Kleinschnitz, Christoph and Kuerten, Stefanie}, title = {Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis}, series = {Journal of Neuroinflammation}, volume = {15}, journal = {Journal of Neuroinflammation}, number = {225}, doi = {10.1186/s12974-018-1263-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176120}, year = {2018}, abstract = {Background: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) for which several new treatment options were recently introduced. Among them is the monoclonal anti-CD52 antibody alemtuzumab that depletes mainly B cells and T cells in the immune periphery. Considering the ongoing controversy about the involvement of B cells and in particular the formation of B cell aggregates in the brains of progressive MS patients, an in-depth understanding of the effects of anti-CD52 antibody treatment on the B cell compartment in the CNS itself is desirable. Methods: We used myelin basic protein (MBP)-proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 (B6) mice as B cell-dependent model of MS. Mice were treated intraperitoneally either at the peak of EAE or at 60 days after onset with 200 μg murine anti-CD52 vs. IgG2a isotype control antibody for five consecutive days. Disease was subsequently monitored for 10 days. The antigen-specific B cell/antibody response was measured by ELISPOT and ELISA. Effects on CNS infiltration and B cell aggregation were determined by immunohistochemistry. Neurodegeneration was evaluated by Luxol Fast Blue, SMI-32, and Olig2/APC staining as well as by electron microscopy and phosphorylated heavy neurofilament serum ELISA. Results: Treatment with anti-CD52 antibody attenuated EAE only when administered at the peak of disease. While there was no effect on the production of MP4-specific IgG, the treatment almost completely depleted CNS infiltrates and B cell aggregates even when given as late as 60 days after onset. On the ultrastructural level, we observed significantly less axonal damage in the spinal cord and cerebellum in chronic EAE after anti-CD52 treatment. Conclusion: Anti-CD52 treatment abrogated B cell infiltration and disrupted existing B cell aggregates in the CNS.}, language = {en} }