@phdthesis{Kuger2015, author = {Kuger, Sebastian}, title = {Radiosensibilisierung humaner Tumorzelllinien unterschiedlicher Entit{\"a}ten durch den dualen PI3K/mTOR-Inhibitor NVP-BEZ235 alleine oder in Kombination mit dem MEK-Inhibitor AZD6244: Einfluss des Behandlungsschemas und der Hypoxie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126715}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Eine wichtige Standardtherapie in der modernen Behandlung von Krebserkrankungen ist die Strahlentherapie, in welcher Tumorzellen mittels ionisierender Strahlung gesch{\"a}digt und abget{\"o}tet werden. Dabei soll die Sch{\"a}digung des umgebenden Normalgewebes m{\"o}glichst gering gehalten und trotzdem eine maximale Sch{\"a}digung des Tumorgewebes erreicht werden. Deshalb sind neue Strategien zur Steigerung der Radiosensitivit{\"a}t des Tumorgewebes sehr wichtig, die es erlauben, bei gleicher Dosis eine verst{\"a}rkte Strahlenantwort im Tumorgewebe zu erreichen. Hier kommen zunehmend sog. Radiosensibilisatoren zum Einsatz, die unter anderem onkogene Signalwege in den Tumorzellen inhibieren. Der PI3K/Akt/mTOR Signalweg stellt hierbei einen wichtigen Ansatzpunkt dar, da er in vielen Tumorentit{\"a}ten dereguliert vorliegt und diese Signalkaskade bekanntermaßen einen Einfluss auf die zellul{\"a}re Strahlensensitivit{\"a}t hat. Obwohl es f{\"u}r diesen Signalweg schon eine Reihe von Inhibitoren gibt, f{\"u}r die bereits neben einer anti-proliferativen Wirkung auch ein radiosensibilisierender Effekt nachgewiesen wurde (z.B. Wortmannin und Rapamycin), machten eine geringe Spezifit{\"a}t, starke Nebenwirkungen und negative R{\"u}ckkopplungsmechanismen im Signalweg, die die Wirkung des Inhibitors kompensieren, die Entwicklung neuer Inhibitoren notwendig. Das Imidazoquinolinderivat NVP-BEZ235 inhibiert den PI3K/Akt/mTOR Signalweg an mehreren Stellen gleichzeitig, indem es kompetitiv zu ATP das katalytische Zentrum von PI3K und mTOR blockiert. F{\"u}r diesen kleinmolekularen, dualen Inhibitor gibt es bereits erste vielversprechende Forschungsergebnisse hinsichtlich einer radiosensibilisierenden Wirkung, allerdings sind die zugrunde liegenden molekularbiologischen Mechanismen noch nicht vollst{\"a}ndig gekl{\"a}rt. Deshalb war das Ziel der vorliegenden Dissertation, in drei Teilprojekten mehrere Aspekte der NVP-BEZ235-induzierten Radiosensibilisierung aufzukl{\"a}ren: a) Einfluss des Behandlungsschemas f{\"u}r NVP-BEZ235 in vier Glioblastomzelllinien mit unterschiedlichem PTEN und TP53 Mutationsstatus, b) Einfluss der Sauerstoffversorgung (Hypoxie, Normoxie, reoxygeniert nach Bestrahlung) auf die strahlensensibilisierende Wirkung von NVP-BEZ235 in zwei Mammakarzinomzelllinien, c) gleichzeitige Inhibierung des MAPK Signalwegs durch AZD6244 und der PI3K/Akt/mTOR Signalkaskade durch NVP-BEZ235 in zwei Zelllinien mit unter-schiedlichem Mutationsstatus aus verschiedenen Tumorentit{\"a}ten, um synergistische Effekte zu untersuchen. Um diese Fragestellungen zu beantworten, wurde im Rahmen - 142 - der Dissertation eine Auswahl an humanen Tumorzelllinien mit unterschiedlich deregulierten Signalwegen bearbeitet. Dabei wurde die Expression von Schl{\"u}sselproteinen der MAPK/Erk und der PI3K/Akt/mTOR Signalwege analysiert und mit zellbiologischen Daten verschiedener ph{\"a}notypischer Endpunkte nach Inhibitor Behandlung und Bestrahlung integriert (Proliferationsrate, klonogenes {\"U}berleben, Zellzyklusaberrationen, DNS-Sch{\"a}den und -Reparatur, Zelltod und Autophagie). Im Teilprojekt zum Behandlungsschema der NVP-BEZ235 Inhibierung und Bestrahlung konnte in vier Glioblastomzelllinien mit Behandlungsschema I (NVP-BEZ235 Behandlung 24 Stunden vor Bestrahlung) kein radiosensibilisierender Effekt hinsichtlich klonogenem {\"U}berleben nachgewiesen werden, wohingegen Behandlungsschema II (NVP-BEZ235 Behandlung 1 h vor und im Anschluss an die Bestrahlung) unabh{\"a}ngig vom Mutationsstatus in allen vier Zelllinien eine starke Radiosensibilisierung bewirkte. Auf molekularer Ebene war zwischen beiden Behandlungsschemata f{\"u}r das antiapoptotische Protein Akt ein großer Unterschied zu beobachten, welches bei Behandlung nach Schema I zum Zeitpunkt der Bestrahlung {\"u}beraktiviert, nach Behandlung mit Schema II hingegen inhibiert war. Weiterhin resultierte Behandlungsschema I in einem erh{\"o}hten Anteil der Zellen in der radioresistenteren G1-Phase des Zellzyklus zum Zeit-punkt der Bestrahlung. Behandlungsschema II f{\"u}hrte hingegen nach Bestrahlung zu einer verminderten Expression des Reparaturproteins Rad51 und damit zu verminderter DNS-Schadensreparatur und schließlich zu einem stabilen Arrest in der G2/M-Phase des Zellzyklus sowie zu verst{\"a}rkter Apoptose (erh{\"o}hte Spaltung von PARP, erh{\"o}hter Anteil hypodiploider Zellen). Somit zeigen diese Ergebnisse, dass unabh{\"a}ngig vom PTEN und TP53 Mutationsstatus eine Radiosensibilisierung nur durch das Behandlungsschema II erreicht werden konnte. Ferner deuten die Ergebnisse der Proteinexpression darauf hin, dass durch NVP-BEZ235 ein negativer R{\"u}ckkopplungsmechanismus ausgel{\"o}st wird, wodurch die PI3K/Akt/mTOR Signalkaskade 24h nach Zugabe des Inhibitors aktiviert und synergistische Effekte mit ionisierender Bestrahlung aufgehoben wurden. Im Teilprojekt zur Abh{\"a}ngigkeit der NVP-BEZ235 Inhibition vom Sauerstoffgehalt wurden in den beiden Brustkrebszelllinien MCF-7 (ER-positiv) und TN MDA-MB-231 (TP53 mutiert) normoxische, hypoxische und nach Bestrahlung reoxygenierte Kulturbedingungen im Hinblick auf die Koloniebildungsf{\"a}higkeit nach NVP-BEZ235 Behandlung und Bestrahlung untersucht. Die beobachtete Radiosensibilisierung war unter allen getesteten Bedingungen auf gleichem Niveau. In beiden Zelllinien bewirkte NVP-BEZ235 eine Inhibition des antiapoptotischen HIF-1α Proteins, eine stabile Inaktivierung des PI3K/Akt/mTOR Signalweges und eine Aktivierung der Autophagie. Nach Bestrahlung waren zudem erh{\"o}hte residuale DNS-Sch{\"a}den und ein stabiler Arrest in der G2/M-Phase des Zellzyklus unter allen Oxygenierungsbedingungen in beiden Zelllinien zu beobachten. Eine Apoptose Induktion (Spaltung von PARP, hypodiploide Zellen) trat nur in der TP53 wildtypischen MCF-7 Zelllinie nach NVP-BEZ235 Behandlung auf. Somit konnte in beiden Zelllinien in allen pathophysiologisch relevanten Oxygenierungszust{\"a}nden eine sauerstoffunabh{\"a}ngige Radiosensibilisierung durch NVP-BEZ235 gezeigt werden. Der bisher nicht erforschte Aspekt zur synergistischen Wirkung des MEK Inhibitors AZD6244 und des dualen PI3K/Akt/mTOR Inhibitors NVP-BEZ235 nach Bestrahlung wurde an der Glioblastomzelllinie SNB19 und der Lungenkarzinomzelllinie A549 anhand der Koloniebildungsf{\"a}higkeit der behandelten Zellen untersucht. Eine Behandlung mit dem MEK Inhibitor bewirkte lediglich eine moderate Radiosensibilisierung, wohin-gegen der duale PI3K/Akt/mTOR Inhibitor beide Zelllinien in st{\"a}rkerem Maße sensibilisierte. Eine Kombination beider Inhibitoren resultierte bei keiner Zelllinie in einer Verst{\"a}rkung der durch NVP-BEZ235 induzierten Radiosensibilisierung. Eine m{\"o}gliche Erkl{\"a}rung f{\"u}r die fehlende Synergie im Bezug auf die Radiosensibilisierung k{\"o}nnen die gegens{\"a}tzlichen Effekte der beiden Inhibitoren auf den Zellzyklus sein. Auf Proteinebene f{\"u}hrte eine simultane Behandlung mit beiden Substanzen zur Inhibition beider Signalwege. Dar{\"u}ber hinaus war in SNB19 Zellen eine verst{\"a}rkte Dephosphorylierung von Rb und ein erh{\"o}hter Anteil an G1-Phase Zellen bei kombinierter Gabe der Inhibitoren zu beobachten. Im Rahmen dieser Arbeit konnte somit die radiosensibilisierende Wirkung von NVP-BEZ235 in Abh{\"a}ngigkeit vom Behandlungsschema gezeigt werden. Ferner wurde nachgewiesen, dass die Radiosensibilisierung unabh{\"a}ngig von der Sauerstoffversorgung sowie von den PTEN und TP53 Mutationsstatus der Tumorzellen ist. Die kombinierte Inhibition der MAPK und PI3K/Akt/mTOR Signalwege resultierte zwar in einem verst{\"a}rkten zytostatischen, aber nicht in einem verst{\"a}rkten radiosensibilisierenden Effekt. Da allerdings eine große Anzahl verschiedener Inhibitoren der MAPK/Erk und der PI3K/Akt/mTOR Signalkaskade verf{\"u}gbar sind, sollte die kombinatorische Inhibition dieser Signalwege systematisch weiter verfolgt werden. Die vorliegende Arbeit liefert auch weitere grundlegende Erkenntnisse zu den molekularen Mechanismen der Radiosensibilisierung durch NVP-BEZ235, die auch auf Verkn{\"u}pfungen und Wechselwirkungen mit anderen als den bisher bekannten Proteinen hindeuten, die f{\"u}r jeden Inhibitor aufgekl{\"a}rt werden m{\"u}ssen, um eine effektive radiosensibilisierende Wirkung vorher-sagen zu k{\"o}nnen.}, subject = {Strahlensensibilisator}, language = {de} } @article{KugerFlentjeDjuzenova2015, author = {Kuger, Sebastian and Flentje, Michael and Djuzenova, Cholpon S.}, title = {Simultaneous perturbation of the MAPK and the PI3K/mTOR pathways does not lead to increased radiosensitization}, series = {Radiation Oncology}, volume = {10}, journal = {Radiation Oncology}, number = {214}, doi = {10.1186/s13014-015-0514-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126104}, year = {2015}, abstract = {Background The mitogen-activated protein kinases (MAPK) and the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are intertwined on various levels and simultaneous inhibition reduces tumorsize and prolonges survival synergistically. Furthermore, inhibiting these pathways radiosensitized cancer cells in various studies. To assess, if phenotypic changes after perturbations of this signaling network depend on the genetic background, we integrated a time series of the signaling data with phenotypic data after simultaneous MAPK/ERK kinase (MEK) and PI3K/mTOR inhibition and ionizing radiation (IR). Methods The MEK inhibitor AZD6244 and the dual PI3K/mTOR inhibitor NVP-BEZ235 were tested in glioblastoma and lung carcinoma cells, which differ in their mutational status in the MAPK and the PI3K/mTOR pathways. Effects of AZD6244 and NVP-BEZ235 on the proliferation were assessed using an ATP assay. Drug treatment and IR effects on the signaling network were analyzed in a time-dependent manner along with measurements of phenotypic changes in the colony forming ability, apoptosis, autophagy or cell cycle. Results Both inhibitors reduced the tumor cell proliferation in a dose-dependent manner, with NVP-BEZ235 revealing the higher anti-proliferative potential. Our Western blot data indicated that AZD6244 and NVP-BEZ235 perturbed the MAPK and PI3K/mTOR signaling cascades, respectively. Additionally, we confirmed crosstalks and feedback loops in the pathways. As shown by colony forming assay, the AZD6244 moderately radiosensitized cancer cells, whereas NVP-BEZ235 caused a stronger radiosensitization. Combining both drugs did not enhance the NVP-BEZ235-mediated radiosensitization. Both inhibitors caused a cell cycle arrest in the G1-phase, whereas concomitant IR and treatment with the inhibitors resulted in cell line- and drug-specific cell cycle alterations. Furthermore, combining both inhibitors synergistically enhanced a G1-phase arrest in sham-irradiated glioblastoma cells and induced apoptosis and autophagy in both cell lines. Conclusion Perturbations of the MEK and the PI3K pathway radiosensitized tumor cells of different origins and the combination of AZD6244 and NVP-BEZ235 yielded cytostatic effects in several tumor entities. However, this is the first study assessing, if the combination of both drugs also results in synergistic effects in terms of radiosensitivity. Our study demonstrates that simultaneous treatment with both pathway inhibitors does not lead to synergistic radiosensitization but causes cell line-specific effects.}, language = {en} } @article{WohllebenScherzadGuettleretal.2015, author = {Wohlleben, Gisela and Scherzad, Agmal and G{\"u}ttler, Antje and Vordermark, Dirk and Kuger, Sebastian and Flentje, Michael and Polat, Buelent}, title = {Influence of hypoxia and irradiation on osteopontin expression in head and neck cancer and glioblastoma cell lines}, series = {Radiation Oncology}, volume = {10}, journal = {Radiation Oncology}, number = {167}, doi = {10.1186/s13014-015-0473-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125746}, year = {2015}, abstract = {Background Tumor hypoxia is a known risk factor for reduced response to radiotherapy. The evaluation of noninvasive methods for the detection of hypoxia is therefore of interest. Osteopontin (OPN) has been discussed as an endogenous hypoxia biomarker. It is overexpressed in many cancers and is involved in tumor progression and metastasis. Methods To examine the influence of hypoxia and irradiation on osteopontin expression we used different cell lines (head and neck cancer (Cal27 and FaDu) and glioblastoma multiforme (U251 and U87)). Cells were treated with hypoxia for 24 h and were then irradiated with doses of 2 and 8 Gy. Osteopontin expression was analyzed on mRNA level by quantitative real-time RT-PCR (qPCR) and on protein level by western blot. Cell culture supernatants were evaluated for secreted OPN by ELISA. Results Hypoxia caused an increase in osteopontin protein expression in all cell lines. In Cal27 a corresponding increase in OPN mRNA expression was observed. In contrast the other cell lines showed a reduced mRNA expression under hypoxic conditions. After irradiation OPN mRNA expression raised slightly in FaDu and U87 cells while it was reduced in U251 and stable in Cal27 cells under normoxia. The combined treatment (hypoxia and irradiation) led to a slight increase of OPN mRNA after 2 Gy in U251 (24 h) and in U87 (24 and 48 h) cell lines falling back to base line after 8 Gy. This effect was not seen in Cal27 or in FaDu cells. Secreted OPN was detected only in the two glioblastoma cell lines with reduced protein levels under hypoxic conditions. Again the combined treatment resulted in a minor increase in OPN secretion 48 hours after irradiation with 8 Gy. Conclusion Osteopontin expression is strongly modulated by hypoxia and only to a minor extent by irradiation. Intracellular OPN homeostasis seems to vary considerably between cell lines. This may explain the partly conflicting results concerning response prediction and prognosis in the clinical setting.}, language = {en} } @article{KugerCoerekPolatetal.2014, author = {Kuger, Sebastian and C{\"o}rek, Emre and Polat, B{\"u}lent and K{\"a}mmerer, Ulrike and Flentje, Michael and Djuzenova, Cholpon S.}, title = {Novel PI3K and mTOR Inhibitor NVP-BEZ235 Radiosensitizes Breast Cancer Cell Lines under Normoxic and Hypoxic Conditions}, doi = {10.4137/BCBCR.S13693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112708}, year = {2014}, abstract = {In the present study, we assessed, if the novel dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor NVP-BEZ235 radiosensitizes triple negative (TN) MDA-MB-231 and estrogen receptor (ER) positive MCF-7 cells to ionizing radiation under various oxygen conditions, simulating different microenvironments as occurring in the majority of breast cancers (BCs). Irradiation (IR) of BC cells cultivated in hypoxic conditions revealed increased radioresistance compared to normoxic controls. Treatment with NVP-BEZ235 completely circumvented this hypoxia-induced effects and radiosensitized normoxic, reoxygenated, and hypoxic cells to similar extents. Furthermore, NVP-BEZ235 treatment suppressed HIF-1α expression and PI3K/mTOR signaling, induced autophagy, and caused protracted DNA damage repair in both cell lines in all tested oxygen conditions. Moreover, after incubation with NVP-BEZ235, MCF-7 cells revealed depletion of phospho-AKT and considerable signs of apoptosis, which were signifi-cantly enhanced by radiation. Our findings clearly demonstrate that NVP-BEZ235 has a clinical relevant potential as a radiosensitizer in BC treatment.}, language = {en} }