@article{WaltherWagnerKurzai2019, author = {Walther, Grit and Wagner, Lysett and Kurzai, Oliver}, title = {Updates on the taxonomy of Mucorales with an emphasis on clinically important taxa}, series = {Journal of Fungi}, volume = {5}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof5040106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193081}, year = {2019}, abstract = {Fungi of the order Mucorales colonize all kinds of wet, organic materials and represent a permanent part of the human environment. They are economically important as fermenting agents of soybean products and producers of enzymes, but also as plant parasites and spoilage organisms. Several taxa cause life-threatening infections, predominantly in patients with impaired immunity. The order Mucorales has now been assigned to the phylum Mucoromycota and is comprised of 261 species in 55 genera. Of these accepted species, 38 have been reported to cause infections in humans, as a clinical entity known as mucormycosis. Due to molecular phylogenetic studies, the taxonomy of the order has changed widely during the last years. Characteristics such as homothallism, the shape of the suspensors, or the formation of sporangiola are shown to be not taxonomically relevant. Several genera including Absidia, Backusella, Circinella, Mucor, and Rhizomucor have been amended and their revisions are summarized in this review. Medically important species that have been affected by recent changes include Lichtheimia corymbifera, Mucor circinelloides, and Rhizopus microsporus. The species concept of Rhizopus arrhizus (syn. R. oryzae) is still a matter of debate. Currently, species identification of the Mucorales is best performed by sequencing of the internal transcribed spacer (ITS) region. Ecologically, the Mucorales represent a diverse group but for the majority of taxa, the ecological role and the geographic distribution remain unknown. Understanding the biology of these opportunistic fungal pathogens is a prerequisite for the prevention of infections, and, consequently, studies on the ecology of the Mucorales are urgently needed.}, language = {en} } @article{SpringerWaltherRickertsetal.2019, author = {Springer, Jan and Walther, Grit and Rickerts, Volker and Hamprecht, Axel and Willinger, Birgit and Teschner, Daniel and Einsele, Hermann and Kurzai, Oliver and Loeffler, Juergen}, title = {Detection of Fusarium Species in Clinical Specimens by Probe-Based Real-Time PCR}, series = {Journal of Fungi}, volume = {5}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof5040105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193111}, pages = {105}, year = {2019}, abstract = {The mold Fusarium is a ubiquitous fungus causing plant, animal and human infections. In humans, Fusarium spp. are the major cause of eye infections in patients wearing contact lenses or after local trauma. Systemic infections by Fusarium spp. mainly occur in immunosuppressed patients and can disseminate throughout the human body. Due to high levels of resistance to antifungals a fast identification of the causative agent is an urgent need. By using a probe-based real-time PCR assay specific for the genus Fusarium we analysed several different clinical specimens detecting Fusarium spp. commonly found in clinical samples in Germany. Also, a large collection of lung fluid samples of haematological patients was analysed (n = 243). In these, two samples (0.8\%) were reproducibly positive, but only one could be confirmed by sequencing. For this case of probable invasive fungal disease (IFD) culture was positive for Fusarium species. Here we describe a rapid, probe-based real-time PCR assay to specifically detect DNA from a broad range of Fusarium species and its application to clinically relevant specimens.}, language = {en} } @article{AlZabenMedyukhinaDietrichetal.2019, author = {Al-Zaben, Naim and Medyukhina, Anna and Dietrich, Stefanie and Marolda, Alessandra and H{\"u}nniger, Kerstin and Kurzai, Oliver and Figge, Marc Thilo}, title = {Automated tracking of label-free cells with enhanced recognition of whole tracks}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-39725-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221093}, year = {2019}, abstract = {Migration and interactions of immune cells are routinely studied by time-lapse microscopy of in vitro migration and confrontation assays. To objectively quantify the dynamic behavior of cells, software tools for automated cell tracking can be applied. However, many existing tracking algorithms recognize only rather short fragments of a whole cell track and rely on cell staining to enhance cell segmentation. While our previously developed segmentation approach enables tracking of label-free cells, it still suffers from frequently recognizing only short track fragments. In this study, we identify sources of track fragmentation and provide solutions to obtain longer cell tracks. This is achieved by improving the detection of low-contrast cells and by optimizing the value of the gap size parameter, which defines the number of missing cell positions between track fragments that is accepted for still connecting them into one track. We find that the enhanced track recognition increases the average length of cell tracks up to 2.2-fold. Recognizing cell tracks as a whole will enable studying and quantifying more complex patterns of cell behavior, e.g. switches in migration mode or dependence of the phagocytosis efficiency on the number and type of preceding interactions. Such quantitative analyses will improve our understanding of how immune cells interact and function in health and disease.}, language = {en} }