@article{ApsemidouFuellerIdelevichetal.2020, author = {Apsemidou, Athanasia and F{\"u}ller, Miriam Antonie and Idelevich, Evgeny A. and Kurzai, Oliver and Tragiannidis, Athanasios and Groll, Andreas H.}, title = {Candida lusitaniae breakthrough fungemia in an immuno-compromised adolescent: case report and review of the literature}, series = {Journal of Fungi}, volume = {6}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof6040380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220125}, year = {2020}, abstract = {Candida lusitaniae is a rare cause of candidemia that is known for its unique capability to rapidly acquire resistance to amphotericin B. We report the case of an adolescent with grade IV graft-vs.-host disease after hematopoietic cell transplantation who developed catheter-associated C. lusitaniae candidemia while on therapeutic doses of liposomal amphotericin B. We review the epidemiology of C. lusitaniae bloodstream infections in adult and pediatric patients, the development of resistance, and its role in breakthrough candidemia. Appropriate species identification, in vitro susceptibility testing, and source control are pivotal to optimal management of C. lusitaniae candidemia. Initial antifungal therapy may consist of an echinocandin and be guided by in vitro susceptibility and clinical response.}, language = {en} } @article{AldejohannWiesePosseltGastmeieretal.2022, author = {Aldejohann, Alexander Maximilian and Wiese-Posselt, Miriam and Gastmeier, Petra and Kurzai, Oliver}, title = {Expert recommendations for prevention and management of Candida auris transmission}, series = {Mycoses}, volume = {65}, journal = {Mycoses}, number = {6}, doi = {10.1111/myc.13445}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318570}, pages = {590 -- 598}, year = {2022}, abstract = {Candida auris was first described as a yeast pathogen in 2009. Since then, the species has emerged worldwide. In contrast to most other Candida spp., C. auris frequently exhibits multi-drug resistance and is readily transmitted in hospital settings. While most detections so far are from colonised patients, C. auris does cause superficial and life-threatening invasive infections. During management of the first documented C. auris transmission in a German hospital, experts from the National Reference Centers for Invasive Fungal Infections (NRZMyk) and the National Reference Center for Surveillance of Nosocomial Infections screened available literature and integrated available knowledge on infection prevention and C. auris epidemiology and biology to enable optimal containment. Relevant recommendations developed during this process are summarised in this guidance document, intended to assist in management of C. auris transmission and potential outbreak situations. Rapid and effective measures to contain C. auris spread require a multi-disciplinary approach that includes clinical specialists of the affected unit, nursing staff, hospital hygiene, diagnostic microbiology, cleaning staff, hospital management and experts in diagnostic mycology / fungal infections. Action should be initiated in a step-wise process and relevant interventions differ between management of singular C. auris colonised / infected patients and detection of potential C. auris transmission or nosocomial outbreaks.}, language = {en} } @article{AlZabenMedyukhinaDietrichetal.2019, author = {Al-Zaben, Naim and Medyukhina, Anna and Dietrich, Stefanie and Marolda, Alessandra and H{\"u}nniger, Kerstin and Kurzai, Oliver and Figge, Marc Thilo}, title = {Automated tracking of label-free cells with enhanced recognition of whole tracks}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-39725-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221093}, year = {2019}, abstract = {Migration and interactions of immune cells are routinely studied by time-lapse microscopy of in vitro migration and confrontation assays. To objectively quantify the dynamic behavior of cells, software tools for automated cell tracking can be applied. However, many existing tracking algorithms recognize only rather short fragments of a whole cell track and rely on cell staining to enhance cell segmentation. While our previously developed segmentation approach enables tracking of label-free cells, it still suffers from frequently recognizing only short track fragments. In this study, we identify sources of track fragmentation and provide solutions to obtain longer cell tracks. This is achieved by improving the detection of low-contrast cells and by optimizing the value of the gap size parameter, which defines the number of missing cell positions between track fragments that is accepted for still connecting them into one track. We find that the enhanced track recognition increases the average length of cell tracks up to 2.2-fold. Recognizing cell tracks as a whole will enable studying and quantifying more complex patterns of cell behavior, e.g. switches in migration mode or dependence of the phagocytosis efficiency on the number and type of preceding interactions. Such quantitative analyses will improve our understanding of how immune cells interact and function in health and disease.}, language = {en} }