@article{HarkinBrochSchrecketal.2016, author = {Harkin, David J. and Broch, Katharina and Schreck, Maximilian and Ceyman, Harald and Stoy, Andreas and Yong, Chaw-Keong and Nikolka, Mark and McCulloch, Ian and Stingelin, Natalie and Lambert, Christoph and Sirringhaus, Henning}, title = {Decoupling charge transport and electroluminescence in a high mobility polymer semiconductor}, series = {Advanced Materials}, volume = {28}, journal = {Advanced Materials}, number = {30}, doi = {10.1002/adma.201600851}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187670}, pages = {6378-6285}, year = {2016}, abstract = {Fluorescence enhancement of a high-mobility polymer semiconductor is achieved via energy transfer to a higher fluorescence quantum yield squaraine dye molecule on 50 ps timescales. In organic light-emitting diodes, an order of magnitude enhancement of the external quantum efficiency is observed without reduction in the charge-carrier mobility resulting in radiances of up to 5 W str\(^{-1}\) m\(^{-2}\) at 800 nm.}, language = {en} } @article{MieczkowskiSteinmetzgerBessietal.2021, author = {Mieczkowski, Mateusz and Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and Schmiedel, Alexander and Holzapfel, Marco and Lambert, Christoph and Pena, Vladimir and H{\"o}bartner, Claudia}, title = {Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-021-23932-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254527}, pages = {3549}, year = {2021}, abstract = {Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer.}, language = {en} } @article{TurkinHolzapfelAgarwaletal.2021, author = {Turkin, Arthur and Holzapfel, Marco and Agarwal, Mohit and Fischermeier, David and Mitric, Roland and Schweins, Ralf and Gr{\"o}hns, Franziska and Lambert, Christoph}, title = {Solvent Induced Helix Folding of Defined Indolenine Squaraine Oligomers}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {32}, doi = {10.1002/chem.202101063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256869}, pages = {8380-8389}, year = {2021}, abstract = {A protecting group strategy was employed to synthesise a series of indolenine squaraine dye oligomers up to the nonamer. The longer oligomers show a distinct solvent dependence of the absorption spectra, that is, either a strong blue shift or a strong red shift of the lowest energy bands in the near infrared spectral region. This behaviour is explained by exciton coupling theory as being due to H- or J-type coupling of transition moments. The H-type coupling is a consequence of a helix folding in solvents with a small Hansen dispersity index. DOSY NMR, small angle neutron scattering (SANS), quantum chemical and force field calculations agree upon a helix structure with an unusually large pitch and open voids that are filled with solvent molecules, thereby forming a kind of clathrate. The thermodynamic parameters of the folding process were determined by temperature dependent optical absorption spectra.}, language = {en} } @article{BoldStolteShoyamaetal.2022, author = {Bold, Kevin and Stolte, Matthias and Shoyama, Kazutaka and Holzapfel, Marco and Schmiedel, Alexander and Lambert, Christoph and W{\"u}rthner, Frank}, title = {Macrocyclic donor-acceptor dyads composed of a perylene bisimide dye surrounded by oligothiophene bridges}, series = {Angewandte Chemie Internationale Edition}, volume = {61}, journal = {Angewandte Chemie Internationale Edition}, number = {1}, doi = {10.1002/anie.202113598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256569}, year = {2022}, abstract = {Two macrocyclic architectures comprising oligothiophene strands that connect the imide positions of a perylene bisimide (PBI) dye have been synthesized via a platinum-mediated cross-coupling strategy. The crystal structure of the double bridged PBI reveals all syn-arranged thiophene units that completely enclose the planar PBI chromophore via a 12-membered macrocycle. The target structures were characterized by steady-state UV/Vis absorption, fluorescence and transient absorption spectroscopy, as well as cyclic and differential pulse voltammetry. Both donor-acceptor dyads show ultrafast F{\"o}rster Resonance Energy Transfer and photoinduced electron transfer, thereby leading to extremely low fluorescence quantum yields even in the lowest polarity cyclohexane solvent.}, language = {en} } @article{ZhangRadackiBraunschweigetal.2021, author = {Zhang, Fangyuan and Radacki, Krzysztof and Braunschweig, Holger and Lambert, Christoph and Ravat, Prince}, title = {Zinc-[7]helicenocyanine and its discrete π-stacked homochiral Dimer}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202109380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256534}, pages = {23656-23660}, year = {2021}, abstract = {In this communication, we demonstrate a novel approach to prepare a discrete dimer of chiral phthalocyanine (Pc) by exploiting the flexible molecular geometry of helicenes, which enables structural interlocking and strong aggregation tendency of Pcs. Synthesized [7]helicene-Pc hybrid molecular structure, zinc-[7]helicenocyanine (Zn-7HPc), exclusively forms a stable dimeric pair consisting of two homochiral molecules. The dimerization constants were estimated to be as high as 8.96×10\(^6\) M\(^{-1}\) and 3.42×107 M\(^{-1}\) in THF and DMSO, respectively, indicating remarkable stability of dimer. In addition, Zn\(^{-7}\)HPc exhibited chiral self-sorting behavior, which resulted in preferential formation of a homochiral dimer also in the racemic sample. Two phthalocyanine subunits in the dimeric form strongly communicate with each other as revealed by a large comproportionation constant and observation of an IV-CT band for the thermodynamically stable mixed-valence state.}, language = {en} } @article{LuebtowMarciniakSchmiedeletal.2019, author = {L{\"u}btow, Michael M. and Marciniak, Henning and Schmiedel, Alexander and Roos, Markus and Lambert, Christoph and Luxenhofer, Robert}, title = {Ultra-high to ultra-low drug loaded micelles: Probing host-guest interactions by fluorescence spectroscopy}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {54}, doi = {10.1002/chem.201902619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206128}, pages = {12601-12610}, year = {2019}, abstract = {Polymer micelles are an attractive means to solubilize water insoluble compounds such as drugs. Drug loading, formulations stability and control over drug release are crucial factors for drug-loaded polymer micelles. The interactions between the polymeric host and the guest molecules are considered critical to control these factors but typically barely understood. Here, we compare two isomeric polymer micelles, one of which enables ultra-high curcumin loading exceeding 50 wt.\%, while the other allows a drug loading of only 25 wt.\%. In the low capacity micelles, steady-state fluorescence revealed a very unusual feature of curcumin fluorescence, a high energy emission at 510 nm. Time-resolved fluorescence upconversion showed that the fluorescence life time of the corresponding species is too short in the high-capacity micelles, preventing an observable emission in steady-state. Therefore, contrary to common perception, stronger interactions between host and guest can be detrimental to the drug loading in polymer micelles.}, subject = {Polymer-drug interaction}, language = {en} } @article{MieczkowskiSteinmetzgerBessietal.2021, author = {Mieczkowski, Mateusz and Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and Schmiedel, Alexander and Holzapfel, Marco and Lambert, Christoph and Pena, Vladimir and H{\"o}bartner, Claudia}, title = {Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-021-23932-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270274}, year = {2021}, abstract = {Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer.}, language = {en} } @article{BoldStolteShoyamaetal.2022, author = {Bold, Kevin and Stolte, Matthias and Shoyama, Kazutaka and Krause, Ana-Maria and Schmiedel, Alexander and Holzapfel, Marco and Lambert, Christoph and W{\"u}rthner, Frank}, title = {Macrocyclic Donor-Acceptor Dyads Composed of Oligothiophene Half-Cycles and Perylene Bisimides}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {30}, doi = {10.1002/chem.202200355}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276435}, year = {2022}, abstract = {A series of donor-acceptor (D-A) macrocyclic dyads consisting of an electron-poor perylene bisimide (PBI) π-scaffold bridged with electron-rich α-oligothiophenes bearing four, five, six and seven thiophene units between the two phenyl-imide substituents has been synthesized and characterized by steady-state UV/Vis absorption and fluorescence spectroscopy, cyclic and differential pulse voltammetry as well as transient absorption spectroscopy. Tying the oligothiophene strands in a conformationally fixed macrocyclic arrangement leads to a more rigid π-scaffold with vibronic fine structure in the respective absorption spectra. Electrochemical analysis disclosed charged state properties in solution which are strongly dependent on the degree of rigidification within the individual macrocycle. Investigation of the excited state dynamics revealed an oligothiophene bridge size-dependent fast charge transfer process for the macrocyclic dyads upon PBI subunit excitation.}, language = {en} }