@article{EngeFleischhauerGaertneretal.2016, author = {Enge, S{\"o}ren and Fleischhauer, Monika and G{\"a}rtner, Anne and Reif, Andreas and Lesch, Klaus-Peter and Kliegel, Matthias and Strobel, Alexander}, title = {Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training}, series = {Frontiers in Human Neuroscience}, volume = {10}, journal = {Frontiers in Human Neuroscience}, number = {370}, doi = {10.3389/fnhum.2016.00370}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165176}, year = {2016}, abstract = {Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting no changes in the trained inhibition function, the observed genotype-dependent performance changes from pre- to post measurement may reflect rapid learning or memory effects linked to BDNF and 5-HTTLPR. In line with ample evidence on BDNF and BDNF-5-HT system interactions to induce (rapid) plasticity especially in hippocampal regions and in response to environmental demands, the findings may reflect genotype-dependent differences in the acquisition and consolidation of task-relevant information, thereby facilitating a more adaptive responding to task-specific requirements.}, language = {en} } @article{MeyerRichterSchreiberetal.2016, author = {Meyer, Neele and Richter, S. Helene and Schreiber, Rebecca S. and Kloke, Vanessa and Kaiser, Sylvia and Lesch, Klaus-Peter and Sachser, Norbert}, title = {The Unexpected Effects of Beneficial and Adverse Social Experiences during Adolescence on Anxiety and Aggression and Their Modulation by Genotype}, series = {Frontiers in Behavioral Neuroscience}, volume = {10}, journal = {Frontiers in Behavioral Neuroscience}, number = {97}, doi = {10.3389/fnbeh.2016.00097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165090}, year = {2016}, abstract = {Anxiety and aggression are part of the behavioral repertoire of humans and animals. However, in their exaggerated form both can become maladaptive and result in psychiatric disorders. On the one hand, genetic predisposition has been shown to play a crucial modulatory role in anxiety and aggression. On the other hand, social experiences have been implicated in the modulation of these traits. However, so far, mainly experiences in early life phases have been considered crucial for shaping anxiety-like and aggressive behavior, while the phase of adolescence has largely been neglected. Therefore, the aim of the present study was to elucidate how levels of anxiety-like and aggressive behavior are shaped by social experiences during adolescence and serotonin transporter (5-HTT) genotype. For this purpose, male mice of a 5-HTT knockout mouse model including all three genotypes (wildtype, heterozygous and homozygous 5-HTT knockout mice) were either exposed to an adverse social situation or a beneficial social environment during adolescence. This was accomplished in a custom-made cage system where mice experiencing the adverse environment were repeatedly introduced to the territory of a dominant opponent but had the possibility to escape to a refuge cage. Mice encountering beneficial social conditions had free access to a female mating partner. Afterwards, anxiety-like and aggressive behavior was assessed in a battery of tests. Surprisingly, unfavorable conditions during adolescence led to a decrease in anxiety-like behavior and an increase in exploratory locomotion. Additionally, aggressive behavior was augmented in animals that experienced social adversity. Concerning genotype, homozygous 5-HTT knockout mice were more anxious and less aggressive than heterozygous 5-HTT knockout and wildtype mice. In summary, adolescence is clearly an important phase in which anxiety-like and aggressive behavior can be shaped. Furthermore, it seems that having to cope with challenge during adolescence instead of experiencing throughout beneficial social conditions leads to reduced levels of anxiety-like behavior.}, language = {en} } @article{StrekalovaMarkovaShevtsovaetal.2016, author = {Strekalova, Tatyana and Markova, Nataliia and Shevtsova, Elena and Zubareva, Olga and Bakhmet, Anastassia and Steinbusch, Harry M. and Bachurin, Sergey and Lesch, Klaus-Peter}, title = {Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test}, series = {Neural Plasticity}, volume = {2016}, journal = {Neural Plasticity}, doi = {10.1155/2016/5098591}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147379}, pages = {5098591}, year = {2016}, abstract = {While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta) mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome.}, language = {en} } @article{WolfBraunHainingetal.2016, author = {Wolf, Karen and Braun, Attila and Haining, Elizabeth J. and Tseng, Yu-Lun and Kraft, Peter and Schuhmann, Michael K. and Gotru, Sanjeev K. and Chen, Wenchun and Hermanns, Heike M. and Stoll, Guido and Lesch, Klaus-Peter and Nieswandt, Bernhard}, title = {Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0147664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146399}, pages = {e0147664}, year = {2016}, abstract = {Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt\(^{-/-}\)) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt\(^{-/-}\) platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca\(^{2+}\) entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt\(^{-/-}\) platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt\(^{-/-}\) mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt\(^{-/-}\) mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization.}, language = {en} } @article{CouchTrofimovMarkovaetal.2016, author = {Couch, Yvonne and Trofimov, Alexander and Markova, Natalyia and Nikolenko, Vladimir and Steinbusch, Harry W. and Chekhonin, Vladimir and Schroeter, Careen and Lesch, Klaus-Peter and Anthony, Daniel C. and Strekalova, Tatyana}, title = {Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice}, series = {Journal of Neuroinflammation}, volume = {13}, journal = {Journal of Neuroinflammation}, number = {108}, doi = {10.1186/s12974-016-0572-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165676}, pages = {1-17}, year = {2016}, abstract = {Background Aggression, hyperactivity, impulsivity, helplessness and anhedonia are all signs of depressive-like disorders in humans and are often reported to be present in animal models of depression induced by stress or by inflammatory challenges. However, chronic mild stress (CMS) and clinically silent inflammation, during the recovery period after an infection, for example, are often coincident, but comparison of the behavioural and molecular changes that underpin CMS vs a mild inflammatory challenge and impact of the combined challenge is largely unexplored. Here, we examined whether stress-induced behavioural and molecular responses are analogous to lipopolysaccharide (LPS)-induced behavioural and molecular effects and whether their combination is adaptive or maladaptive. Methods Changes in measures of hedonic sensitivity, helplessness, aggression, impulsivity and CNS and systemic cytokine and 5-HT-system-related gene expression were investigated in C57BL/6J male mice exposed to chronic stress alone, low-dose LPS alone or a combination of LPS and stress. Results When combined with a low dose of LPS, chronic stress resulted in an enhanced depressive-like phenotype but significantly reduced manifestations of aggression and hyperactivity. At the molecular level, LPS was a strong inducer of TNFα, IL-1β and region-specific 5-HT2A mRNA expression in the brain. There was also increased serum corticosterone as well as increased TNFα expression in the liver. Stress did not induce comparable levels of cytokine expression to an LPS challenge, but the combination of stress with LPS reduced the stress-induced changes in 5-HT genes and the LPS-induced elevated IL-1β levels. Conclusions It is evident that when administered independently, both stress and LPS challenges induced distinct molecular and behavioural changes. However, at a time when LPS alone does not induce any overt behavioural changes per se, the combination with stress exacerbates depressive and inhibits aggressive behaviours.}, language = {en} } @article{SongJiaZhangetal.2016, author = {Song, Ning-Ning and Jia, Yun-Fang and Zhang, Lei and Zhang, Qiong and Huang, Ying and Liu, Xiao-Zhen and Hu, Ling and Lan, Wei and Chen, Ling and Lesch, Klaus-Peter and Chen, Xiaoyan and Xu, Lin and Ding, Yu-Qiang}, title = {Reducing central serotonin in adulthood promotes hippocampal neurogenesis}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {20338}, doi = {10.1038/srep20338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168004}, year = {2016}, abstract = {Chronic administration of selective serotonin reuptake inhibitors (SSRIs), which up-regulates central serotonin (5-HT) system function, enhances adult hippocampal neurogenesis. However, the relationship between central 5-HT system and adult neurogenesis has not fully been understood. Here, we report that lowering 5-HT level in adulthood is also able to enhance adult hippocampal neurogenesis. We used tamoxifen (TM)-induced Cre in Pet1-CreER\(^{T2}\) mice to either deplete central serotonergic (5-HTergic) neurons or inactivate 5-HT synthesis in adulthood and explore the role of central 5-HT in adult hippocampal neurogenesis. A dramatic increase in hippocampal neurogenesis is present in these two central 5-HT-deficient mice and it is largely prevented by administration of agonist for 5-HTR2c receptor. In addition, the survival of new-born neurons in the hippocampus is enhanced. Furthermore, the adult 5-HT-deficient mice showed reduced depression-like behaviors but enhanced contextual fear memory. These findings demonstrate that lowering central 5-HT function in adulthood can also enhance adult hippocampal neurogenesis, thus revealing a new aspect of central 5-HT in regulating adult neurogenesis.}, language = {en} } @article{PrelogHilligardtSchmidtetal.2016, author = {Prelog, Martina and Hilligardt, Deborah and Schmidt, Christian A. and Przybylski, Grzegorz K. and Leierer, Johannes and Almanzar, Giovanni and El Hajj, Nady and Lesch, Klaus-Peter and Arolt, Volker and Zwanzger, Peter and Haaf, Thomas and Domschke, Katharina}, title = {Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder?}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179684}, year = {2016}, abstract = {Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders.}, language = {en} } @article{BrevikvanDonkelaarWeberetal.2016, author = {Brevik, Erlend J and van Donkelaar, Marjolein M. J. and Weber, Heike and S{\´a}nchez-Mora, Cristina and Jacob, Christian and Rivero, Olga and Kittel-Schneider, Sarah and Garcia-martinez, Iris and Aebi, Marcel and van Hulzen, Kimm and Cormand, Bru and Ramos-Quiroga, Josep A and Lesch, Klaus-Peter and Reif, Andreas and Ribases, Marta and Franke, Barbara and Posserud, Maj-Britt and Johansson, Stefan and Lundervold, Astri J. and Haavik, Jan and Zayats, Tetyana}, title = {Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder}, series = {American Journal of Medical Genetics Part B-Neuropsychiatric Genetics}, volume = {171B}, journal = {American Journal of Medical Genetics Part B-Neuropsychiatric Genetics}, number = {5}, organization = {IMAGE Consortium}, doi = {10.1002/ajmg.b.32434}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188116}, pages = {733-747}, year = {2016}, abstract = {Aggressiveness is a behavioral trait that has the potential to be harmful to individuals and society. With an estimated heritability of about 40\%, genetics is important in its development. We performed an exploratory genome-wide association (GWA) analysis of childhood aggressiveness in attention deficit hyperactivity disorder (ADHD) to gain insight into the underlying biological processes associated with this trait. Our primary sample consisted of 1,060 adult ADHD patients (aADHD). To further explore the genetic architecture of childhood aggressiveness, we performed enrichment analyses of suggestive genome-wide associations observed in aADHD among GWA signals of dimensions of oppositionality (defiant/vindictive and irritable dimensions) in childhood ADHD (cADHD). No single polymorphism reached genome-wide significance (P<5.00E-08). The strongest signal in aADHD was observed at rs10826548, within a long noncoding RNA gene (beta = -1.66, standard error (SE) = 0.34, P = 1.07E-06), closely followed by rs35974940 in the neurotrimin gene (beta = 3.23, SE = 0.67, P = 1.26E-06). The top GWA SNPs observed in aADHD showed significant enrichment of signals from both the defiant/vindictive dimension (Fisher's P-value = 2.28E-06) and the irritable dimension in cADHD (Fisher's P-value = 0.0061). In sum, our results identify a number of biologically interesting markers possibly underlying childhood aggressiveness and provide targets for further genetic exploration of aggressiveness across psychiatric disorders.}, language = {en} } @article{FereroRiveroWaeldchenetal.2017, author = {Ferero, Andrea and Rivero, Olga and W{\"a}ldchen, Sina and Ku, Hsing-Ping and Kiser, Dominik P. and G{\"a}rtner, Yvonne and Pennington, Laura S. and Waider, Jonas and Gaspar, Patricia and Jansch, Charline and Edenhofer, Frank and Resink, Th{\´e}r{\`e}se J. and Blum, Robert and Sauer, Markus and Lesch, Klaus-Peter}, title = {Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain}, series = {Frontiers in Cellular Neuroscience}, volume = {11}, journal = {Frontiers in Cellular Neuroscience}, number = {307}, doi = {10.3389/fncel.2017.00307}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170313}, year = {2017}, abstract = {Background: During early prenatal stages of brain development, serotonin (5-HT)-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR), innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13) has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system. Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency. Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs), which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5. Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell density of the developing DR and the posterior innervation of the prefrontal cortex (PFC), and therefore might be involved in the migration, axonal outgrowth and terminal target finding of DR 5-HT neurons. Dysregulation of CDH13 expression may thus contribute to alterations in this system of neurotransmission, impacting cognitive function, which is frequently impaired in neurodevelopmental disorders including attention-deficit/hyperactivity and autism spectrum disorders.}, language = {en} } @article{VeniaminovaCespuglioCheungetal.2017, author = {Veniaminova, Ekaterina and Cespuglio, Raymond and Cheung, Chi Wai and Umriukhin, Alexei and Markova, Nataliia and Shevtsova, Elena and Lesch, Klaus-Peter and Anthony, Daniel C. and Strekalova, Tatyana}, title = {Autism-like behaviours and memory deficits result from a Western Diet in mice}, series = {Neural Plasticity}, journal = {Neural Plasticity}, doi = {10.1155/2017/9498247}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158211}, pages = {9498247}, year = {2017}, abstract = {Nonalcoholic fatty liver disease, induced by a Western diet (WD), evokes central and peripheral inflammation that is accompanied by altered emotionality. These changes can be associated with abnormalities in social behaviour, hippocampus-dependent cognitive functions, and metabolism. Female C57BL/6J mice were fed with a regular chow or with a WD containing 0.2\% of cholesterol and 21\% of saturated fat for three weeks. WD-treated mice exhibited increased social avoidance, crawl-over and digging behaviours, decreased body-body contacts, and hyperlocomotion. The WD-fed group also displayed deficits in hippocampal-dependent performance such as contextual memory in a fear conditioning and pellet displacement paradigms. A reduction in glucose tolerance and elevated levels of serum cholesterol and leptin were also associated with the WD. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1a) mRNA, a marker of mitochondrial activity, was decreased in the prefrontal cortex, hippocampus, hypothalamus, and dorsal raphe, suggesting suppressed brain mitochondrial functions, but not in the liver. This is the first report to show that a WD can profoundly suppress social interactions and induce dominant-like behaviours in na{\"i}ve adult mice. The spectrum of behaviours that were found to be induced are reminiscent of symptoms associated with autism, and, if paralleled in humans, suggest that a WD might exacerbate autism spectrum disorder.}, language = {en} }