@article{PageWallstabeLotheretal.2021, author = {Page, Lukas and Wallstabe, Julia and Lother, Jasmin and Bauser, Maximilian and Kniemeyer, Olaf and Strobel, Lea and Voltersen, Vera and Teutschbein, Janka and Hortschansky, Peter and Morton, Charles Oliver and Brakhage, Axel A. and Topp, Max and Einsele, Hermann and Wurster, Sebastian and Loeffler, Juergen}, title = {CcpA- and Shm2-Pulsed Myeloid Dendritic Cells Induce T-Cell Activation and Enhance the Neutrophilic Oxidative Burst Response to Aspergillus fumigatus}, series = {Frontiers in Immunology}, volume = {12}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.659752}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239493}, year = {2021}, abstract = {Aspergillus fumigatus causes life-threatening opportunistic infections in immunocompromised patients. As therapeutic outcomes of invasive aspergillosis (IA) are often unsatisfactory, the development of targeted immunotherapy remains an important goal. Linking the innate and adaptive immune system, dendritic cells are pivotal in anti-Aspergillus defense and have generated interest as a potential immunotherapeutic approach in IA. While monocyte-derived dendritic cells (moDCs) require ex vivo differentiation, antigen-pulsed primary myeloid dendritic cells (mDCs) may present a more immediate platform for immunotherapy. To that end, we compared the response patterns and cellular interactions of human primary mDCs and moDCs pulsed with an A. fumigatus lysate and two A. fumigatus proteins (CcpA and Shm2) in a serum-free, GMP-compliant medium. CcpA and Shm2 triggered significant upregulation of maturation markers in mDCs and, to a lesser extent, moDCs. Furthermore, both A. fumigatus proteins elicited the release of an array of key pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-8, and CCL3 from both DC populations. Compared to moDCs, CcpA- and Shm2-pulsed mDCs exhibited greater expression of MHC class II antigens and stimulated stronger proliferation and IFN-γ secretion from autologous CD4\(^+\) and CD8\(^+\) T-cells. Moreover, supernatants of CcpA- and Shm2-pulsed mDCs significantly enhanced the oxidative burst in allogeneic neutrophils co-cultured with A. fumigatus germ tubes. Taken together, our in vitro data suggest that ex vivo CcpA- and Shm2-pulsed primary mDCs have the potential to be developed into an immunotherapeutic approach to tackle IA.}, language = {en} } @article{ZieglerWeissSchmittetal.2017, author = {Ziegler, Sabrina and Weiss, Esther and Schmitt, Anna-Lena and Schlegel, Jan and Burgert, Anne and Terpitz, Ulrich and Sauer, Markus and Moretta, Lorenzo and Sivori, Simona and Leonhardt, Ines and Kurzai, Oliver and Einsele, Hermann and Loeffler, Juergen}, title = {CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {6138}, doi = {10.1038/s41598-017-06238-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170637}, year = {2017}, abstract = {Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.}, language = {en} } @article{LauruschkatEtterSchnacketal.2021, author = {Lauruschkat, Chris D. and Etter, Sonja and Schnack, Elisabeth and Ebel, Frank and Sch{\"a}uble, Sascha and Page, Lukas and R{\"u}mens, Dana and Dragan, Mariola and Schlegel, Nicolas and Panagiotou, Gianni and Kniemeyer, Olaf and Brakhage, Axel A. and Einsele, Hermann and Wurster, Sebastian and Loeffler, Juergen}, title = {Chronic occupational mold exposure drives expansion of Aspergillus-reactive type 1 and type 2 T-helper cell responses}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {9}, issn = {2309-608X}, doi = {10.3390/jof7090698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245202}, year = {2021}, abstract = {Occupational mold exposure can lead to Aspergillus-associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to Aspergillus-associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to A. fumigatus antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls. Organic farmers harbored significantly higher A. fumigatus-specific Th-cell frequencies than controls, with comparable expansion of Th1- and Th2-cell frequencies but only slightly elevated Th17-cell frequencies. Accordingly, Aspergillus antigen-induced Th1 and Th2 cytokine levels were strongly elevated, whereas induction of IL-17A was minimal. Additionally, increased levels of some innate immune cell-derived cytokines were found in samples from organic farmers. Antigen-induced cytokine release combined with Aspergillus-specific Th-cell frequencies resulted in high classification accuracy between organic farmers and controls. Aspf22, CatB, and CipC elicited the strongest differences in Th1 and Th2 responses between the two cohorts, suggesting these antigens as potential candidates for future bio-effect monitoring approaches. Overall, we found that occupationally exposed agricultural workers display a largely balanced co-expansion of Th1 and Th2 immunity with only minor changes in Th17 responses.}, language = {en} } @article{PaholcsekFidlerKonyaetal.2015, author = {Paholcsek, Melinda and Fidler, Gabor and Konya, Jozsef and Rejto, Laszlo and Mehes, Gabor and Bukta, Evelin and Loeffler, Juergen and Biro, Sandor}, title = {Combining standard clinical methods with PCR showed improved diagnosis of invasive pulmonary aspergillosis in patients with hematological malignancies and prolonged neutropenia}, series = {BMC Infectious Diseases}, volume = {15}, journal = {BMC Infectious Diseases}, number = {251}, doi = {10.1186/s12879-015-0995-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151607}, year = {2015}, abstract = {Background: We assessed the diagnostic value of standard clinical methods and combined biomarker testing (galactomannan assay and polymerase chain reaction screening) in a prospective case-control study to detect invasive pulmonary aspergillosis in patients with hematological malignancies and prolonged neutropenia. Methods: In this observational study 162 biomarker analyses were performed on samples from 27 febrile neutropenic episodes. Sera were successively screened for galactomannan antigen and for Aspergillus fumigatus specific nucleic acid targets. Furthermore thoracic computed tomography scanning was performed along with bronchoscopy with lavage when clinically indicated. Patients were retrospectively stratified to define a case-group with "proven" or "probable" invasive pulmonary aspergillosis (25.93 \%) and a control-group of patients with no evidence for of invasive pulmonary aspergillosis (74.07 \%). In 44.44 \% of episodes fever ceased in response to antibiotic treatment (group II). Empirical antifungal therapy was administered for episodes with persistent or relapsing fever (group I). 48.15 \% of patients died during the study period. Postmortem histology was pursued in 53.85 \% of fatalities. Results: Concordant negative galactomannan and computed tomography supported by a polymerase chain reaction assay were shown to have the highest discriminatory power to exclude invasive pulmonary aspergillosis. Bronchoalveolar lavage was performed in 6 cases of invasive pulmonary aspergillosis and in 15 controls. Although bronchoalveolar lavage proved negative in 93 \% of controls it did not detect IPA in 86 \% of the cases. Remarkably post mortem histology convincingly supported the presence of Aspergillus hyphae in lung tissue from a single case which had consecutive positive polymerase chain reaction assay results but was misdiagnosed by both computed tomography and consistently negative galactomannan assay results. For the galactomannan enzyme-immunoassay the diagnostic odds ratio was 15.33 and for the polymerase chain reaction assay it was 28.67. According to Cohen's kappa our in-house polymerase chain reaction method showed a fair agreement with the galactomannan immunoassay. Combined analysis of the results from the Aspergillus galactomannan enzyme immunoassay together with those generated by our polymerase chain reaction assay led to no misdiagnoses in the control group. Conclusion: The data from this pilot-study demonstrate that the consideration of standard clinical methods combined with biomarker testing improves the capacity to make early and more accurate diagnostic decisions.}, language = {en} } @article{BelicPageLazariotouetal.2019, author = {Belic, Stanislav and Page, Lukas and Lazariotou, Maria and Waaga-Gasser, Ana Maria and Dragan, Mariola and Springer, Jan and Loeffler, Juergen and Morton, Charles Oliver and Einsele, Hermann and Ullmann, Andrew J. and Wurster, Sebastian}, title = {Comparative Analysis of Inflammatory Cytokine Release and Alveolar Epithelial Barrier Invasion in a Transwell® Bilayer Model of Mucormycosis}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.03204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252477}, year = {2019}, abstract = {Understanding the mechanisms of early invasion and epithelial defense in opportunistic mold infections is crucial for the evaluation of diagnostic biomarkers and novel treatment strategies. Recent studies revealed unique characteristics of the immunopathology of mucormycoses. We therefore adapted an alveolar Transwell® A549/HPAEC bilayer model for the assessment of epithelial barrier integrity and cytokine response to Rhizopus arrhizus, Rhizomucor pusillus, and Cunninghamella bertholletiae. Hyphal penetration of the alveolar barrier was validated by 18S ribosomal DNA detection in the endothelial compartment. Addition of dendritic cells (moDCs) to the alveolar compartment led to reduced fungal invasion and strongly enhanced pro-inflammatory cytokine response, whereas epithelial CCL2 and CCL5 release was reduced. Despite their phenotypic heterogeneity, the studied Mucorales species elicited the release of similar cytokine patterns by epithelial and dendritic cells. There were significantly elevated lactate dehydrogenase concentrations in the alveolar compartment and epithelial barrier permeability for dextran blue of different molecular weights in Mucorales-infected samples compared to Aspergillus fumigatus infection. Addition of monocyte-derived dendritic cells further aggravated LDH release and epithelial barrier permeability, highlighting the influence of the inflammatory response in mucormycosis-associated tissue damage. An important focus of this study was the evaluation of the reproducibility of readout parameters in independent experimental runs. Our results revealed consistently low coefficients of variation for cytokine concentrations and transcriptional levels of cytokine genes and cell integrity markers. As additional means of model validation, we confirmed that our bilayer model captures key principles of Mucorales biology such as accelerated growth in a hyperglycemic or ketoacidotic environment or reduced epithelial barrier invasion upon epithelial growth factor receptor blockade by gefitinib. Our findings indicate that the Transwell® bilayer model provides a reliable and reproducible tool for assessing host response in mucormycosis.}, language = {en} } @article{WhiteWiederholdLoeffleretal.2016, author = {White, P. Lewis and Wiederhold, Nathan P. and Loeffler, Juergen and Najvar, Laura K. and Melchers, Willem and Herrera, Monica and Bretagne, Stephane and Wickes, Brian and Kirkpatrick, William R. and Barnes, Rosemary A. and Donnelly, J. Peter and Patterson, Thomas F.}, title = {Comparison of nonculture blood-based tests for diagnosing invasive aspergillosis in an animal model}, series = {Journal of Clinical Microbiology}, volume = {54}, journal = {Journal of Clinical Microbiology}, number = {4}, doi = {10.1128/JCM.03233-15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189674}, pages = {960-966}, year = {2016}, abstract = {The European Aspergillus PCR Initiative (EAPCRI) has provided recommendations for the PCR testing of whole blood (WB) and serum/plasma. It is important to test these recommended protocols on nonsimulated "in vivo" specimens before full clinical evaluation. The testing of an animal model of invasive aspergillosis (IA) overcomes the low incidence of disease and provides experimental design and control that is not possible in the clinical setting. Inadequate performance of the recommended protocols at this stage would require reassessment of methods before clinical trials are performed and utility assessed. The manuscript describes the performance of EAPCRI protocols in an animal model of invasive aspergillosis. Blood samples taken from a guinea pig model of IA were used for WB and serum PCR. Galactomannan and beta-D-glucan detection were evaluated, with particular focus on the timing of positivity and on the interpretation of combination testing. The overall sensitivities for WB PCR, serum PCR, galactomannan, and beta-D-glucan were 73\%, 65\%, 68\%, and 46\%, respectively. The corresponding specificities were 92\%, 79\%, 80\%, and 100\%, respectively. PCR provided the earliest indicator of IA, and increasing galactomannan and beta-D-glucan values were indicators of disease progression. The combination of WB PCR with galactomannan and beta-D-glucan proved optimal (area under the curve AUC], 0.95), and IA was confidently diagnosed or excluded. The EAPRCI-recommended PCR protocols provide performance comparable to commercial antigen tests, and clinical trials are warranted. By combining multiple tests, IA can be excluded or confirmed, highlighting the need for a combined diagnostic strategy. However, this approach must be balanced against the practicality and cost of using multiple tests.}, language = {en} } @article{SpringerWaltherRickertsetal.2019, author = {Springer, Jan and Walther, Grit and Rickerts, Volker and Hamprecht, Axel and Willinger, Birgit and Teschner, Daniel and Einsele, Hermann and Kurzai, Oliver and Loeffler, Juergen}, title = {Detection of Fusarium Species in Clinical Specimens by Probe-Based Real-Time PCR}, series = {Journal of Fungi}, volume = {5}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof5040105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193111}, pages = {105}, year = {2019}, abstract = {The mold Fusarium is a ubiquitous fungus causing plant, animal and human infections. In humans, Fusarium spp. are the major cause of eye infections in patients wearing contact lenses or after local trauma. Systemic infections by Fusarium spp. mainly occur in immunosuppressed patients and can disseminate throughout the human body. Due to high levels of resistance to antifungals a fast identification of the causative agent is an urgent need. By using a probe-based real-time PCR assay specific for the genus Fusarium we analysed several different clinical specimens detecting Fusarium spp. commonly found in clinical samples in Germany. Also, a large collection of lung fluid samples of haematological patients was analysed (n = 243). In these, two samples (0.8\%) were reproducibly positive, but only one could be confirmed by sequencing. For this case of probable invasive fungal disease (IFD) culture was positive for Fusarium species. Here we describe a rapid, probe-based real-time PCR assay to specifically detect DNA from a broad range of Fusarium species and its application to clinically relevant specimens.}, language = {en} } @article{LauruschkatPageWhiteetal.2021, author = {Lauruschkat, Chris D. and Page, Lukas and White, P. Lewis and Etter, Sonja and Davies, Helen E. and Duckers, Jamie and Ebel, Frank and Schnack, Elisabeth and Backx, Matthijs and Dragan, Mariola and Schlegel, Nicolas and Kniemeyer, Olaf and Brakhage, Axel A. and Einsele, Hermann and Loeffler, Juergen and Wurster, Sebastian}, title = {Development of a simple and robust whole blood assay with dual co-stimulation to quantify the release of T-cellular signature cytokines in response to Aspergillus fumigatus antigens}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {6}, issn = {2309-608X}, doi = {10.3390/jof7060462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241025}, year = {2021}, abstract = {Deeper understanding of mold-induced cytokine signatures could promote advances in the diagnosis and treatment of invasive mycoses and mold-associated hypersensitivity syndromes. Currently, most T-cellular immunoassays in medical mycology require the isolation of mononuclear cells and have limited robustness and practicability, hampering their broader applicability in clinical practice. Therefore, we developed a simple, cost-efficient whole blood (WB) assay with dual α-CD28 and α-CD49d co-stimulation to quantify cytokine secretion in response to Aspergillus fumigatus antigens. Dual co-stimulation strongly enhanced A. fumigatus-induced release of T-cellular signature cytokines detectable by enzyme-linked immunosorbent assay (ELISA) or a multiplex cytokine assay. Furthermore, T-cell-dependent activation and cytokine response of innate immune cells was captured by the assay. The protocol consistently showed little technical variation and high robustness to pre-analytic delays of up to 8 h. Stimulation with an A. fumigatus lysate elicited at least 7-fold greater median concentrations of key T-helper cell signature cytokines, including IL-17 and the type 2 T-helper cell cytokines IL-4 and IL-5 in WB samples from patients with Aspergillus-associated lung pathologies versus patients with non-mold-related lung diseases, suggesting high discriminatory power of the assay. These results position WB-ELISA with dual co-stimulation as a simple, accurate, and robust immunoassay for translational applications, encouraging further evaluation as a platform to monitor host immunity to opportunistic pathogens.}, language = {en} } @article{SpringerHeldMengolietal.2021, author = {Springer, Jan and Held, J{\"u}rgen and Mengoli, Carlo and Schlegel, Paul Gerhardt and Gamon, Florian and Tr{\"a}ger, Johannes and Kurzai, Oliver and Einsele, Hermann and Loeffler, Juergen and Eyrich, Matthias}, title = {Diagnostic performance of (1→3)-β-D-glucan alone and in combination with aspergillus PCR and galactomannan in serum of pediatric patients after allogeneic hematopoietic stem cell transplantation}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {3}, issn = {2309-608X}, doi = {10.3390/jof7030238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234179}, year = {2021}, abstract = {Data on biomarker-assisted diagnosis of invasive aspergillosis (IA) in pediatric patients is scarce. Therefore, we conducted a cohort study over two years including 404 serum specimens of 26 pediatric patients after allogeneic hematopoietic stem cell transplantation (alloSCT). Sera were tested prospectively twice weekly for Aspergillus-specific DNA, galactomannan (GM), and retrospectively for (1→3)-β-D-glucan (BDG). Three probable IA and two possible invasive fungal disease (IFD) cases were identified using the European Organization for Research and Treatment of Cancer and the Mycoses Study Group (EORTC/MSGERC) 2019 consensus definitions. Sensitivity and specificity for diagnosis of probable IA and possible IFD was 80\% (95\% confidential interval (CI): 28-99\%) and 55\% (95\% CI: 32-77\%) for BDG, 40\% (95\% CI: 5-85\%) and 100\% (95\% CI: 83-100\%) for GM, and 60\% (95\% CI: 15-95\%) and 95\% (95\% CI: 75-100\%) for Aspergillus-specific real-time PCR. However, sensitivities have to be interpreted with great caution due to the limited number of IA cases. Interestingly, the low specificity of BDG was largely caused by false-positive BDG results that clustered around the date of alloSCT. The following strategies were able to increase BDG specificity: two consecutive positive BDG tests for diagnosis (specificity 80\% (95\% CI: 56-94\%)); using an optimized cutoff value of 306 pg/mL (specificity 90\% (95\% CI: 68-99\%)) and testing BDG only after the acute posttransplant phase. In summary, BDG can help to diagnose IA in pediatric alloSCT recipients. However, due to the poor specificity either an increased cutoff value should be utilized or BDG results should be confirmed by an alternative Aspergillus assay.}, language = {en} } @article{HellmannLotherWursteretal.2017, author = {Hellmann, Anna-Maria and Lother, Jasmin and Wurster, Sebastian and Lutz, Manfred B. and Schmitt, Anna Lena and Morton, Charles Oliver and Eyrich, Matthias and Czakai, Kristin and Einsele, Hermann and Loeffler, Juergen}, title = {Human and Murine Innate Immune Cell Populations Display Common and Distinct Response Patterns during Their In Vitro Interaction with the Pathogenic Mold Aspergillus fumigatus}, series = {Frontiers in Immunology}, volume = {8}, journal = {Frontiers in Immunology}, number = {1716}, doi = {10.3389/fimmu.2017.01716}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169926}, year = {2017}, abstract = {Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus. However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus. For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus. Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host-pathogen interaction studies.}, language = {en} }