@article{EwaldGlotzbachSchoonGerdesetal.2014, author = {Ewald, Heike and Glotzbach-Schoon, Evelyn and Gerdes, Antje B. M. and Andreatta, Marta and M{\"u}ller, Mathias and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {Delay and trace fear conditioning in a complex virtual learning environment - neural substrates of extinction}, series = {Frontiers in Human Neuroscience}, volume = {8}, journal = {Frontiers in Human Neuroscience}, number = {323}, issn = {1662-5161}, doi = {10.3389/fnhum.2014.00323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116230}, year = {2014}, abstract = {Extinction is an important mechanism to inhibit initially acquired fear responses. There is growing evidence that the ventromedial prefrontal cortex (vmPFC) inhibits the amygdala and therefore plays an important role in the extinction of delay fear conditioning. To our knowledge, there is no evidence on the role of the prefrontal cortex in the extinction of trace conditioning up to now. Thus, we compared brain structures involved in the extinction of human delay and trace fear conditioning in a between-subjects-design in an fMRI study. Participants were passively guided through a virtual environment during learning and extinction of conditioned fear. Two different lights served as conditioned stimuli (CS); as unconditioned stimulus (US) a mildly painful electric stimulus was delivered. In the delay conditioning group (DCG) the US was administered with offset of one light (CS+), whereas in the trace conditioning group (TCG) the US was presented 4s after CS+ offset. Both groups showed insular and striatal activation during early extinction, but differed in their prefrontal activation. The vmPFC was mainly activated in the DCG, whereas the TCG showed activation of the dorsolateral prefrontal cortex (dlPFC) during extinction. These results point to different extinction processes in delay and trace conditioning. VmPFC activation during extinction of delay conditioning might reflect the inhibition of the fear response. In contrast, dlPFC activation during extinction of trace conditioning may reflect modulation of working memory processes which are involved in bridging the trace interval and hold information in short term memory.}, language = {en} } @article{HerrmannGlotzbachMuehlbergeretal.2011, author = {Herrmann, Martin J. and Glotzbach, Evelyn and M{\"u}hlberger, Andreas and Gschwendtner, Kathrin and Fallgatter, Andreas J. and Pauli, Paul}, title = {Prefrontal Brain Activation During Emotional Processing: A Functional Near Infrared Spectroscopy Study (fNIRS)}, series = {The Open Neuroimaging Journal}, journal = {The Open Neuroimaging Journal}, doi = {10.2174/1874440001105010033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97437}, year = {2011}, abstract = {The limbic system and especially the amygdala have been identified as key structures in emotion induction and regulation. Recently research has additionally focused on the influence of prefrontal areas on emotion processing in the limbic system and the amygdala. Results from fMRI studies indicate that the prefrontal cortex (PFC) is involved not only in emotion induction but also in emotion regulation. However, studies using fNIRS only report prefrontal brain activation during emotion induction. So far it lacks the attempt to compare emotion induction and emotion regulation with regard to prefrontal activation measured with fNIRS, to exclude the possibility that the reported prefrontal brain activation in fNIRS studies are mainly caused by automatic emotion regulation processes. Therefore this work tried to distinguish emotion induction from regulation via fNIRS of the prefrontal cortex. 20 healthy women viewed neutral pictures as a baseline condition, fearful pictures as induction condition and reappraised fearful pictures as regulation condition in randomized order. As predicted, the view-fearful condition led to higher arousal ratings than the view-neutral condition with the reappraise-fearful condition in between. For the fNIRS results the induction condition showed an activation of the bilateral PFC compared to the baseline condition (viewing neutral). The regulation condition showed an activation only of the left PFC compared to the baseline condition, although the direct comparison between induction and regulation condition revealed no significant difference in brain activation. Therefore our study underscores the results of previous fNIRS studies showing prefrontal brain activation during emotion induction and rejects the hypothesis that this prefrontal brain activation might only be a result of automatic emotion regulation processes.}, language = {en} } @article{PauliGlotzbachSchoonAndreattaetal.2013, author = {Pauli, Paul and Glotzbach-Schoon, Evelyn and Andreatta, Marta and Reif, Andreas and Ewald, Heike and Tr{\"o}ger, Christian and Baumann, Christian and Deckert, J{\"u}rgen and M{\"u}hlberger, Andreas}, title = {Contextual fear conditioning in virtual reality is affected by 5HTTLPR and NPSR1 polymorphisms: effects on fear-potentiated startle}, series = {Frontiers in Behavioral Neuroscience}, journal = {Frontiers in Behavioral Neuroscience}, doi = {10.3389/fnbeh.2013.00031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96516}, year = {2013}, abstract = {The serotonin (5-HT) and neuropeptide S (NPS) systems are discussed as important genetic modulators of fear and sustained anxiety contributing to the etiology of anxiety disorders. Sustained anxiety is a crucial characteristic of most anxiety disorders which likely develops through contextual fear conditioning. This study investigated if and how genetic alterations of the 5-HT and the NPS systems as well as their interaction modulate contextual fear conditioning; specifically, function polymorphic variants in the genes coding for the 5-HT transporter (5HTT) and the NPS receptor (NPSR1) were studied. A large group of healthy volunteers was therefore stratified for 5HTTLPR (S+ vs. LL carriers) and NPSR1 rs324981 (T+ vs. AA carriers) polymorphisms resulting in four genotype groups (S+/T+, S+/AA, LL/T+, LL/AA) of 20 participants each. All participants underwent contextual fear conditioning and extinction using a virtual reality (VR) paradigm. During acquisition, one virtual office room (anxiety context, CXT+) was paired with an unpredictable electric stimulus (unconditioned stimulus, US), whereas another virtual office room was not paired with any US (safety context, CXT-). During extinction no US was administered. Anxiety responses were quantified by fear-potentiated startle and ratings. Most importantly, we found a gene × gene interaction on fear-potentiated startle. Only carriers of both risk alleles (S+/T+) exhibited higher startle responses in CXT+ compared to CXT-. In contrast, anxiety ratings were only influenced by the NPSR1 polymorphism with AA carriers showing higher anxiety ratings in CXT+ as compared to CXT-. Our results speak in favor of a two level account of fear conditioning with diverging effects on implicit vs. explicit fear responses. Enhanced contextual fear conditioning as reflected in potentiated startle responses may be an endophenotype for anxiety disorders.}, language = {en} } @article{ManishNueckelMuehlbergeretal.2013, author = {Manish, Asthana and Nueckel, Katharina and M{\"u}hlberger, Andreas and Neueder, Dorothea and Polak, Thomas and Domschke, Katharina and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Effects of transcranial direct current stimulation on consolidation of fear memory}, series = {Frontiers in Neuropsychiatric Imaging and Stimulation}, journal = {Frontiers in Neuropsychiatric Imaging and Stimulation}, doi = {10.3389/fpsyt.2013.00107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97294}, year = {2013}, abstract = {It has been shown that applying transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) influences declarative memory processes. This study investigates the efficacy of tDCS on emotional memory consolidation, especially experimental fear conditioning. We applied an auditory fear-conditioning paradigm, in which two differently colored squares (blue and yellow) were presented as conditioned stimuli (CS) and an auditory stimulus as unconditioned stimulus (UCS). Sixty-nine participants were randomly assigned into three groups: anodal, cathodal, and sham stimulation. The participants of the two active groups (i.e., anodal and cathodal) received tDCS over the left DLPFC for 12 min after fear conditioning. The effect of fear conditioning and consolidation (24 h later) was measured by assessing the skin conductance response (SCR) to the CS. The results provide evidence that cathodal stimulation of the left DLPFC leads to an inhibitory effect on fear memory consolidation compared to anodal and sham stimulation, as indicated by decreased SCRs to CS+ presentation during extinction training at day 2. In conclusion, current work suggests that cathodal stimulation interferes with processes of fear memory consolidation.}, language = {en} } @article{LikowskiMuehlbergerGerdesetal.2012, author = {Likowski, Katja U. and M{\"u}hlberger, Andreas and Gerdes, Antje B. M. and Wieser, Mattias J. and Pauli, Paul and Weyers, Peter}, title = {Facial mimicry and the mirror neuron system: simultaneous acquisition of facial electromyography and functional magnetic resonance imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75813}, year = {2012}, abstract = {Numerous studies have shown that humans automatically react with congruent facial reactions, i.e., facial mimicry, when seeing a vis-{\´a}-vis' facial expressions. The current experiment is the first investigating the neuronal structures responsible for differences in the occurrence of such facial mimicry reactions by simultaneously measuring BOLD and facial EMG in an MRI scanner. Therefore, 20 female students viewed emotional facial expressions (happy, sad, and angry) of male and female avatar characters. During picture presentation, the BOLD signal as well as M. zygomaticus major and M. corrugator supercilii activity were recorded simultaneously. Results show prototypical patterns of facial mimicry after correction for MR-related artifacts: enhanced M. zygomaticus major activity in response to happy and enhanced M. corrugator supercilii activity in response to sad and angry expressions. Regression analyses show that these congruent facial reactions correlate significantly with activations in the IFG, SMA, and cerebellum. Stronger zygomaticus reactions to happy faces were further associated to increased activities in the caudate, MTG, and PCC. Corrugator reactions to angry expressions were further correlated with the hippocampus, insula, and STS. Results are discussed in relation to core and extended models of the mirror neuron system (MNS).}, subject = {Psychologie}, language = {en} } @article{DiemerAlpersPeperkornetal.2015, author = {Diemer, Julia and Alpers, Georg W. and Peperkorn, Henrik M. and Shiban, Youssef and M{\"u}hlberger, Andreas}, title = {The impact of perception and presence on emotional reactions: a review of research in virtual reality}, series = {Frontiers in Psychology}, volume = {6}, journal = {Frontiers in Psychology}, number = {26}, doi = {10.3389/fpsyg.2015.00026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144200}, year = {2015}, abstract = {Virtual reality (VR) has made its way into mainstream psychological research in the last two decades. This technology, with its unique ability to simulate complex, real situations and contexts, offers researchers unprecedented opportunities to investigate human behavior in well controlled designs in the laboratory. One important application of VR is the investigation of pathological processes in mental disorders, especially anxiety disorders. Research on the processes underlying threat perception, fear, and exposure therapy has shed light on more general aspects of the relation between perception and emotion. Being by its nature virtual, i.e., simulation of reality, VR strongly relies on the adequate selection of specific perceptual cues to activate emotions. Emotional experiences in turn are related to presence, another important concept in VR, which describes the user's sense of being in a VR environment. This paper summarizes current research into perception of fear cues, emotion, and presence, aiming at the identification of the most relevant aspects of emotional experience in VR and their mutual relations. A special focus lies on a series of recent experiments designed to test the relative contribution of perception and conceptual information on fear in VR. This strand of research capitalizes on the dissociation between perception (bottom up input) and conceptual information (top-down input) that is possible in VR. Further, we review the factors that have so far been recognized to influence presence, with emotions (e.g., fear) being the most relevant in the context of clinical psychology. Recent research has highlighted the mutual influence of presence and fear in VR, but has also traced the limits of our current understanding of this relationship. In this paper, the crucial role of perception on eliciting emotional reactions is highlighted, and the role of arousal as a basic dimension of emotional experience is discussed. An interoceptive attribution model of presence is suggested as a first step toward an integrative framework for emotion research in VR. Gaps in the current literature and future directions are outlined.}, language = {en} } @article{GromerMadeiraGastetal.2018, author = {Gromer, Daniel and Madeira, Oct{\´a}via and Gast, Philipp and Nehfischer, Markus and Jost, Michael and M{\"u}ller, Mathias and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {Height Simulation in a Virtual Reality CAVE System: Validity of Fear Responses and Effects of an Immersion Manipulation}, series = {Frontiers in Human Neuroscience}, volume = {12}, journal = {Frontiers in Human Neuroscience}, number = {372}, issn = {1662-5161}, doi = {10.3389/fnhum.2018.00372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196113}, year = {2018}, abstract = {Acrophobia is characterized by intense fear in height situations. Virtual reality (VR) can be used to trigger such phobic fear, and VR exposure therapy (VRET) has proven effective for treatment of phobias, although it remains important to further elucidate factors that modulate and mediate the fear responses triggered in VR. The present study assessed verbal and behavioral fear responses triggered by a height simulation in a 5-sided cave automatic virtual environment (CAVE) with visual and acoustic simulation and further investigated how fear responses are modulated by immersion, i.e., an additional wind simulation, and presence, i.e., the feeling to be present in the VE. Results revealed a high validity for the CAVE and VE in provoking height related self-reported fear and avoidance behavior in accordance with a trait measure of acrophobic fear. Increasing immersion significantly increased fear responses in high height anxious (HHA) participants, but did not affect presence. Nevertheless, presence was found to be an important predictor of fear responses. We conclude that a CAVE system can be used to elicit valid fear responses, which might be further enhanced by immersion manipulations independent from presence. These results may help to improve VRET efficacy and its transfer to real situations.}, language = {en} } @article{WalzMuehlbergerPauli2016, author = {Walz, Nora and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {A human open field test reveals thigmotaxis related to agoraphobic fear}, series = {Biological Psychiatry}, volume = {80}, journal = {Biological Psychiatry}, number = {5}, doi = {10.1016/j.biopsych.2015.12.016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187607}, pages = {390-397}, year = {2016}, abstract = {BACKGROUND: Thigmotaxis refers to a specific behavior of animals (i.e., to stay close to walls when exploring an open space). Such behavior can be assessed with the open field test (OFT), which is a well-established indicator of animal fear. The detection of similar open field behavior in humans may verify the translational validity of this paradigm. Enhanced thigmotaxis related to anxiety may suggest the relevance of such behavior for anxiety disorders, especially agoraphobia. METHODS: A global positioning system was used to analyze the behavior of 16 patients with agoraphobia and 18 healthy individuals with a risk for agoraphobia (i.e., high anxiety sensitivity) during a human OFT and compare it with appropriate control groups (n = 16 and n = 19). We also tracked 17 patients with agoraphobia and 17 control participants during a city walk that involved walking through an open market square. RESULTS: Our human OFT triggered thigmotaxis in participants; patients with agoraphobia and participants with high anxiety sensitivity exhibited enhanced thigmotaxis. This behavior was evident in increased movement lengths along the wall of the natural open field and fewer entries into the center of the field despite normal movement speed and length. Furthermore, participants avoided passing through the market square during the city walk, indicating again that thigmotaxis is related to agoraphobia. CONCLUSIONS: This study is the first to our knowledge to verify the translational validity of the OFT and to reveal that thigmotaxis, an evolutionarily adaptive behavior shown by most species, is related to agoraphobia, a pathologic fear of open spaces, and anxiety sensitivity, a risk factor for agoraphobia.}, language = {en} } @article{AsthanaBrunhuberMuehlbergeretal.2016, author = {Asthana, Manish Kumar and Brunhuber, Bettina and M{\"u}hlberger, Andreas and Reif, Andreas and Schneider, Simone and Herrmann, Martin J.}, title = {Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism}, series = {International Journal of Neuropsychopharmacology}, volume = {19}, journal = {International Journal of Neuropsychopharmacology}, number = {6}, doi = {10.1093/ijnp/pyv137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166217}, year = {2016}, abstract = {Background: Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. Methods: An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. Results: The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Conclusions: Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans.}, language = {en} } @article{ShibanDiemerMuelleretal.2017, author = {Shiban, Youssef and Diemer, Julia and M{\"u}ller, Jana and Br{\"u}tting-Schick, Johanna and Pauli, Paul and M{\"u}hlberger, Andreas}, title = {Diaphragmatic breathing during virtual reality exposure therapy for aviophobia: functional coping strategy or avoidance behavior? A pilot study}, series = {BMC Psychiatry}, volume = {17}, journal = {BMC Psychiatry}, doi = {10.1186/s12888-016-1181-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181007}, pages = {10}, year = {2017}, abstract = {Background: Although there is solid evidence for the efficacy of in vivo and virtual reality (VR) exposure therapy for a specific phobia, there is a significant debate over whether techniques promoting distraction or relaxation have impairing or enhancing effects on treatment outcome. In the present pilot study, we investigated the effect of diaphragmatic breathing (DB) as a relaxation technique during VR exposure treatment. Method: Twenty-nine patients with aviophobia were randomly assigned to VR exposure treatment either with or without diaphragmatic breathing (six cycles per minute). Subjective fear ratings, heart rate and skin conductance were assessed as indicators of fear during both the exposure and the test session one week later. Results: The group that experienced VR exposure combined with diaphragmatic breathing showed a higher tendency to effectively overcome the fear of flying. Psychophysiological measures of fear decreased and self-efficacy increased in both groups with no significant difference between the groups. Conclusions: Our findings indicate that diaphragmatic breathing during VR exposure does not interfere with the treatment outcome and may even enhance treatment effects of VR exposure therapy for aviophobic patients.}, language = {en} }