@article{JiGriesbeckMarder2017, author = {Ji, Lei and Griesbeck, Stefanie and Marder, Todd B.}, title = {Recent developments in and perspectives on three-coordinate boron materials: a bright future}, series = {Chemical Science}, volume = {8}, journal = {Chemical Science}, number = {2}, doi = {10.1039/c6sc04245g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171912}, pages = {846-863}, year = {2017}, abstract = {The empty p\(_z\)-orbital of a three-coordinate organoboron compound leads to its electron-deficient properties, which make it an excellent π-acceptor in conjugated organic chromophores. The empty p-orbital in such Lewis acids can be attacked by nucleophiles, so bulky groups are often employed to provide air-stable materials. However, many of these can still bind fluoride and cyanide anions leading to applications as anion-selective sensors. One electron reduction generates radical anions. The π-acceptor strength can be easily tuned by varying the organic substituents. Many of these compounds show strong two-photon absorption (TPA) and two-photon excited fluorescence (TPEF) behaviour, which can be applied for e.g. biological imaging. Furthermore, these chromophores can be used as emitters and electron transporters in OLEDs, and examples have recently been found to exhibit efficient thermally activated delayed fluorescence (TADF). The three-coordinate organoboron unit can also be incorporated into polycyclic aromatic hydrocarbons. Such boron-doped compounds exhibit very interesting properties, distinct from their all-carbon analogues. Significant developments have been made in all of these areas in recent years and new applications are rapidly emerging for this class of boron compounds.}, language = {en} } @article{FosterEdkinsCameronetal.2014, author = {Foster, Jonathan A. and Edkins, Robert M. and Cameron, Gary J. and Colgin, Neil and Fucke, Katharina and Ridgeway, Sam and Crawford, Andrew G. and Marder, Todd B. and Beeby, Andrew and Cobb, Steven L. and Steed, Jonathan W.}, title = {Blending Gelators to Tune Gel Structure and Probe Anion-Induced Disassembly}, series = {Chemistry : A European Journal}, volume = {20}, journal = {Chemistry : A European Journal}, doi = {10.1002/chem.201303153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121141}, pages = {279-91}, year = {2014}, abstract = {Blending different low molecular weight gelators (LMWGs) provides a convenient route to tune the properties of a gel and incorporate functionalities such as fluorescence. Blending a series of gelators having a common bis-urea motif, and functionalised with different amino acid-derived end-groups and differing length alkylene spacers is reported. Fluorescent gelators incorporating 1- and 2-pyrenyl moieties provide a probe of the mixed systems alongside structural and morphological data from powder diffraction and electron microscopy. Characterisation of the individual gelators reveals that although the expected α-urea tape motif is preserved, there is considerable variation in the gelation properties, molecular packing, fibre morphology and rheological behaviour. Mixing of the gelators revealed examples in which: 1) the gels formed separate, orthogonal networks maintaining their own packing and morphology, 2) the gels blended together into a single network, either adopting the packing and morphology of one gelator, or 3) a new structure not seen for either of the gelators individually was created. The strong binding of the urea functionalities to anions was exploited as a means of breaking down the gel structure, and the use of fluorescent gel blends provides new insights into anion-mediated gel dissolution.}, language = {en} } @article{MerzMerzKirchneretal.2021, author = {Merz, Viktor and Merz, Julia and Kirchner, Maximilian and Lenhart, Julian and Marder, Todd B. and Krueger, Anke}, title = {Pyrene-Based "Turn-Off" Probe with Broad Detection Range for Cu\(^{2+}\), Pb\(^{2+}\) and Hg\(^{2+}\) Ions}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100594}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256803}, pages = {8118-8126}, year = {2021}, abstract = {Detection of metals in different environments with high selectivity and specificity is one of the prerequisites of the fight against environmental pollution with these elements. Pyrenes are well suited for the fluorescence sensing in different media. The applied sensing principle typically relies on the formation of intra- and intermolecular excimers, which is however limiting the sensitivity range due to masking of e. g. quenching effects by the excimer emission. Herein we report a highly selective, structurally rigid chemical sensor based on the monomer fluorescence of pyrene moieties bearing triazole groups. This sensor can quantitatively detect Cu\(^{2+}\), Pb\(^{2+}\) and Hg\(^{2+}\) in organic solvents over a broad concentrations range, even in the presence of ubiquitous ions such as Na\(^{+}\), K\(^{+}\), Ca\(^{2+}\) and Mg\(^{2+}\). The strongly emissive sensor's fluorescence with a long lifetime of 165 ns is quenched by a 1 : 1 complex formation upon addition of metal ions in acetonitrile. Upon addition of a tenfold excess of the metal ion to the sensor, agglomerates with a diameter of about 3 nm are formed. Due to complex interactions in the system, conventional linear correlations are not observed for all concentrations. Therefore, a critical comparison between the conventional Job plot interpretation, the method of Benesi-Hildebrand, and a non-linear fit is presented. The reported system enables the specific and robust sensing of medically and environmentally relevant ions in the health-relevant nM range and could be used e. g. for the monitoring of the respective ions in waste streams.}, language = {en} } @article{HeRauchFriedrichetal.2019, author = {He, Jiang and Rauch, Florian and Friedrich, Alexandra and Sieh, Daniel and Ribbeck, Tatjana and Krummenacher, Ivo and Braunschweig, Holger and Finze, Maik and Marder, Todd B.}, title = {N-Heterocyclic Olefins as Electron Donors in Combination with Triarylborane Acceptors: Synthesis, Optical and Electronic Properties of D-π-A Compounds}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, doi = {10.1002/chem.201903118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204690}, pages = {13777-13784}, year = {2019}, abstract = {N-heterocyclic olefins (NHOs), relatives of N-heterocyclic carbenes (NHCs), exhibit high nucleophilicity and soft Lewis basic character. To investigate their π-electron donating ability, NHOs were attached to triarylborane π-acceptors (A) giving donor (D)-π-A compounds 1-3. In addition, an enamine π-donor analogue (4) was synthesized for comparison. UV-visible absorption studies show a larger red shift for the NHO-containing boranes than for the enamine analogue, a relative of cyclic (alkyl)(amino) carbenes (CAACs). Solvent-dependent emission studies indicate that 1-4 have moderate intramolecular charge-transfer (ICT) behavior. Electrochemical investigations reveal that the NHO-containing boranes have extremely low reversible oxidation potentials (e.g., for 3, \(E^{ox}_{1/2}\) =-0.40 V vs. ferrocene/ferrocenium, Fc/Fc\(^+\), in THF). Time-dependent (TD) DFT calculations show that the HOMOs of 1-3 are much more destabilized than that of the enamine-containing 4, which confirms the stronger donating ability of NHOs.}, language = {en} } @article{BarakDhimanSturmetal.2022, author = {Barak, Arvind and Dhiman, Nishant and Sturm, Floriane and Rauch, Florian and Lakshmanna, Yapamanu Adithya and Findlay, Karen S. and Beeby, Andrew and Marder, Todd B. and Umapathy, Siva}, title = {Excited-State Intramolecular Charge-Transfer Dynamics in 4-Dimethylamino-4′-cyanodiphenylacetylene: An Ultrafast Raman Loss Spectroscopic Perspective}, series = {ChemPhotoChem}, volume = {6}, journal = {ChemPhotoChem}, number = {12}, doi = {10.1002/cptc.202200146}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312280}, year = {2022}, abstract = {Photo-initiated intramolecular charge transfer (ICT) processes play a pivotal role in the excited state reaction dynamics in donor-bridge-acceptor systems. The efficacy of such a process can be improved by modifying the extent of π-conjugation, relative orientation/twists of the donor/acceptor entities and polarity of the environment. Herein, 4-dimethylamino-4′-cyanodiphenylacetylene (DACN-DPA), a typical donor-π-bridge-acceptor system, was chosen to unravel the role of various internal coordinates that govern the extent of photo-initiated ICT dynamics. Transient absorption (TA) spectra of DACN-DPA in n-hexane exhibit a lifetime of >2 ns indicating the formation of a triplet state while, in acetonitrile, a short time-constant of ∼2 ps indicates the formation of charge transferred species. Ultrafast Raman loss spectroscopy (URLS) measurements show distinct temporal and spectral dynamics of Raman bands associated with C≡C and C=C stretching vibrations. The appearance of a new band at ∼1492 cm\(^{-1}\) in acetonitrile clearly indicates structural modification during the ultrafast ICT process. Furthermore, these observations are supported by TD-DFT computations.}, language = {en} } @article{WuDinkelbachKerneretal.2022, author = {Wu, Zhu and Dinkelbach, Fabian and Kerner, Florian and Friedrich, Alexandra and Ji, Lei and Stepanenko, Vladimir and W{\"u}rthner, Frank and Marian, Christel M. and Marder, Todd B.}, title = {Aggregation-Induced Dual Phosphorescence from (o-Bromophenyl)-Bis(2,6-Dimethylphenyl)Borane at Room Temperature}, series = {Chemistry—A European Journal}, volume = {28}, journal = {Chemistry—A European Journal}, number = {30}, doi = {10.1002/chem.202200525}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318297}, year = {2022}, abstract = {Designing highly efficient purely organic phosphors at room temperature remains a challenge because of fast non-radiative processes and slow intersystem crossing (ISC) rates. The majority of them emit only single component phosphorescence. Herein, we have prepared 3 isomers (o, m, p-bromophenyl)-bis(2,6-dimethylphenyl)boranes. Among the 3 isomers (o-, m- and p-BrTAB) synthesized, the ortho-one is the only one which shows dual phosphorescence, with a short lifetime of 0.8 ms and a long lifetime of 234 ms in the crystalline state at room temperature. Based on theoretical calculations and crystal structure analysis of o-BrTAB, the short lifetime component is ascribed to the T\(^M_1\) state of the monomer which emits the higher energy phosphorescence. The long-lived, lower energy phosphorescence emission is attributed to the T\(^A_1\) state of an aggregate, with multiple intermolecular interactions existing in crystalline o-BrTAB inhibiting nonradiative decay and stabilizing the triplet states efficiently.}, language = {en} } @article{WuRoldaoRauchetal.2022, author = {Wu, Zhu and Roldao, Juan Carlos and Rauch, Florian and Friedrich, Alexandra and Ferger, Matthias and W{\"u}rthner, Frank and Gierschner, Johannes and Marder, Todd B.}, title = {Pure Boric Acid Does Not Show Room-Temperature Phosphorescence (RTP)}, series = {Angewandte Chemie}, volume = {61}, journal = {Angewandte Chemie}, number = {15}, doi = {10.1002/anie.202200599}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318308}, year = {2022}, abstract = {Boric acid (BA) has been used as a transparent glass matrix for optical materials for over 100 years. However, recently, apparent room-temperature phosphorescence (RTP) from BA (crystalline and powder states) was reported (Zheng et al., Angew. Chem. Int. Ed. 2021, 60, 9500) when irradiated at 280 nm under ambient conditions. We suspected that RTP from their BA sample was induced by an unidentified impurity. Our experimental results show that pure BA synthesized from B(OMe)\(_{3}\) does not luminesce in the solid state when irradiated at 250-400 nm, while commercial BA indeed (faintly) luminesces. Our theoretical calculations show that neither individual BA molecules nor aggregates would absorb light at >175 nm, and we observe no absorption of solid pure BA experimentally at >200 nm. Therefore, it is not possible for pure BA to be excited at >250 nm even in the solid state. Thus, pure BA does not display RTP, whereas trace impurities can induce RTP.}, language = {en} } @article{BanKaračićTomićetal.2021, author = {Ban, Željka and Karačić, Zrinka and Tomić, Sanja and Amini, Hashem and Marder, Todd B. and Piantanida, Ivo}, title = {Triarylborane dyes as a novel non-covalent and non-inhibitive fluorimetric markers for DPP III enzyme}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {16}, issn = {1420-3049}, doi = {10.3390/molecules26164816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245046}, year = {2021}, abstract = {Novel dyes were prepared by simple "click CuAAC" attachment of a triarylborane-alkyne to the azide side chain of an amino acid yielding triarylborane dye 1 which was conjugated with pyrene (dye 2) forming a triarylborane-pyrene FRET pair. In contrast to previous cationic triarylboranes, the novel neutral dyes interact only with proteins, while their affinity to DNA/RNA is completely abolished. Both the reference triarylborane amino acid and triarylborane-pyrene conjugate bind to BSA and the hDPP III enzyme with high affinities, exhibiting a strong (up to 100-fold) fluorescence increase, whereby the triarylborane-pyrene conjugate additionally retained FRET upon binding to the protein. Furthermore, the triarylborane dyes, upon binding to the hDPP III enzyme, did not impair its enzymatic activity under a wide range of experimental conditions, thus being the first non-covalent fluorimetric markers for hDPP III, also applicable during enzymatic reactions with hDPP III substrates.}, language = {en} } @article{KoleKošćakAmaretal.2022, author = {Kole, Goutam Kumar and Košćak, Marta and Amar, Anissa and Majhen, Dragomira and Božinović, Ksenija and Brkljaca, Zlatko and Ferger, Matthias and Michail, Evripidis and Lorenzen, Sabine and Friedrich, Alexandra and Krummenacher, Ivo and Moos, Michael and Braunschweig, Holger and Boucekkine, Abdou and Lambert, Christoph and Halet, Jean-Fran{\c{c}}ois and Piantanida, Ivo and M{\"u}ller-Buschbaum, Klaus and Marder, Todd B.}, title = {Methyl Viologens of Bis-(4'-Pyridylethynyl)Arenes - Structures, Photophysical and Electrochemical Studies, and their Potential Application in Biology}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {40}, doi = {10.1002/chem.202200753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287126}, year = {2022}, abstract = {A series of bis-(4'-pyridylethynyl)arenes (arene=benzene, tetrafluorobenzene, and anthracene) were synthesized and their bis-N-methylpyridinium compounds were investigated as a class of π-extended methyl viologens. Their structures were determined by single crystal X-ray diffraction, and their photophysical and electrochemical properties (cyclic voltammetry), as well as their interactions with DNA/RNA were investigated. The dications showed bathochromic shifts in emission compared to the neutral compounds. The neutral compounds showed very small Stokes shifts, which are a little larger for the dications. All of the compounds showed very short fluorescence lifetimes (<4 ns). The neutral compound with an anthracene core has a quantum yield of almost unity. With stronger acceptors, the analogous bis-N-methylpyridinium compound showed a larger two-photon absorption cross-section than its neutral precursor. All of the dicationic compounds interact with DNA/RNA; while the compounds with benzene and tetrafluorobenzene cores bind in the grooves, the one with an anthracene core intercalates as a consequence of its large, condensed aromatic linker moiety, and it aggregates within the polynucleotide when in excess over DNA/RNA. Moreover, all cationic compounds showed highly specific CD spectra upon binding to ds-DNA/RNA, attributed to the rare case of forcing the planar, achiral molecule into a chiral rotamer, and negligible toxicity toward human cell lines at ≤10 μM concentrations. The anthracene-analogue exhibited intracellular accumulation within lysosomes, preventing its interaction with cellular DNA/RNA. However, cytotoxicity was evident at 1 μM concentration upon exposure to light, due to singlet oxygen generation within cells. These multi-faceted features, in combination with its two-photon absorption properties, suggest it to be a promising lead compound for development of novel light-activated theranostic agents.}, language = {en} } @article{HuangHuShietal.2022, author = {Huang, Mingming and Hu, Jiefeng and Shi, Shasha and Friedrich, Alexandra and Krebs, Johannes and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Selective, Transition Metal-free 1,2-Diboration of Alkyl Halides, Tosylates, and Alcohols}, series = {Chemistry-A European Journal}, volume = {28}, journal = {Chemistry-A European Journal}, number = {24}, doi = {10.1002/chem.202200480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318262}, year = {2022}, abstract = {Defunctionalization of readily available feedstocks to provide alkenes for the synthesis of multifunctional molecules represents an extremely useful process in organic synthesis. Herein, we describe a transition metal-free, simple and efficient strategy to access alkyl 1,2-bis(boronate esters) via regio- and diastereoselective diboration of secondary and tertiary alkyl halides (Br, Cl, I), tosylates, and alcohols. Control experiments demonstrated that the key to this high reactivity and selectivity is the addition of a combination of potassium iodide and N,N-dimethylacetamide (DMA). The practicality and industrial potential of this transformation are demonstrated by its operational simplicity, wide functional group tolerance, and the late-stage modification of complex molecules. From a drug discovery perspective, this synthetic method offers control of the position of diversification and diastereoselectivity in complex ring scaffolds, which would be especially useful in a lead optimization program.}, language = {en} } @article{ZhangFriedrichMarder2022, author = {Zhang, Xiaolei and Friedrich, Alexandra and Marder, Todd B.}, title = {Copper-Catalyzed Borylation of Acyl Chlorides with an Alkoxy Diboron Reagent: A Facile Route to Acylboron Compounds}, series = {Chemistry—A European Journal}, volume = {28}, journal = {Chemistry—A European Journal}, number = {42}, doi = {10.1002/chem.202201329}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318318}, year = {2022}, abstract = {Herein, the copper-catalyzed borylation of readily available acyl chlorides with bis(pinacolato)diboron, (B\(_{2}\)pin\(_{2}\)) or bis(neopentane glycolato)diboron (B\(_{2}\)neop\(_{2}\)) is reported, which provides stable potassium acyltrifluoroborates (KATs) in good yields from the acylboronate esters. A variety of functional groups are tolerated under the mild reaction conditions (room temperature) and substrates containing different carbon-skeletons, such as aryl, heteroaryl and primary, secondary, tertiary alkyl are applicable. Acyl N-methyliminodiacetic acid (MIDA) boronates can also been accessed by modification of the workup procedures. This process is scalable and also amenable to the late-stage conversion of carboxylic acid-containing drugs into their acylboron analogues, which have been challenging to prepare previously. A catalytic mechanism is proposed based on in situ monitoring of the reaction between p-toluoyl chloride and an NHC-copper(I) boryl complex as well as the isolation of an unusual lithium acylBpinOBpin compound as a key intermediate.}, language = {en} } @article{FergerBanKrošletal.2021, author = {Ferger, Matthias and Ban, Željka and Krošl, Ivona and Tomić, Sanja and Dietrich, Lena and Lorenzen, Sabine and Rauch, Florian and Sieh, Daniel and Friedrich, Alexandra and Griesbeck, Stefanie and Kenđel, Adriana and Miljanić, Snežana and Piantanida, Ivo and Marder, Todd B.}, title = {Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs}, series = {Chemistry-A European Journal}, volume = {27}, journal = {Chemistry-A European Journal}, number = {16}, doi = {10.1002/chem.202005141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256717}, pages = {5142-5159}, year = {2021}, abstract = {We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5′-2,2′-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.}, language = {en} } @article{LiuBudimanTianetal.2020, author = {Liu, Zhiqiang and Budiman, Yudha P. and Tian, Ya-Ming and Friedrich, Alexandra and Huang, Mingming and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Copper-Catalyzed Oxidative Cross-Coupling of Electron-Deficient Polyfluorophenylboronate Esters with Terminal Alkynes}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {71}, doi = {10.1002/chem.202002888}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224362}, pages = {17267 -- 17274}, year = {2020}, abstract = {We report herein a mild procedure for the copper-catalyzed oxidative cross-coupling of electron-deficient polyfluorophenylboronate esters with terminal alkynes. This method displays good functional group tolerance and broad substrate scope, generating cross-coupled alkynyl(fluoro)arene products in moderate to excellent yields. Thus, it represents a simple alternative to the conventional Sonogashira reaction.}, language = {en} } @article{MerzDietzVonhausenetal.2020, author = {Merz, Julia and Dietz, Maximilian and Vonhausen, Yvonne and W{\"o}ber, Frederik and Friedrich, Alexandra and Sieh, Daniel and Krummenacher, Ivo and Braunschweig, Holger and Moos, Michael and Holzapfel, Marco and Lambert, Christoph and Marder, Todd B.}, title = {Synthesis, Photophysical and Electronic Properties of New Red-to-NIR Emitting Donor-Acceptor Pyrene Derivatives}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {2}, doi = {10.1002/chem.201904219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207486}, pages = {438-453}, year = {2020}, abstract = {We synthesized new pyrene derivatives with strong bis(para -methoxyphenyl)amine donors at the 2,7-positions and n -azaacene acceptors at the K-region of pyrene. The compounds possess a strong intramolecular charge transfer, leading to unusual properties such as emission in the red to NIR region (700 nm), which has not been reported before for monomeric pyrenes. Detailed photophysical studies reveal very long intrinsic lifetimes of >100 ns for the new compounds, which is typical for 2,7-substituted pyrenes but not for K-region substituted pyrenes. The incorporation of strong donors and acceptors leads to very low reduction and oxidation potentials, and spectroelectrochemical studies show that the compounds are on the borderline between localized Robin-Day class-II and delocalized Robin-Day class-III species.}, language = {en} } @article{FergerRogerKoesteretal.2022, author = {Ferger, Matthias and Roger, Chantal and K{\"o}ster, Eva and Rauch, Florian and Lorenzen, Sabine and Krummenacher, Ivo and Friedrich, Alexandra and Košćak, Marta and Nestić, Davor and Braunschweig, Holger and Lambert, Christoph and Piantanida, Ivo and Marder, Todd B.}, title = {Electron-Rich EDOT Linkers in Tetracationic bis-Triarylborane Chromophores: Influence on Water Stability, Biomacromolecule Sensing, and Photoinduced Cytotoxicity}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {48}, doi = {10.1002/chem.202201130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287241}, year = {2022}, abstract = {Three novel tetracationic bis-triarylboranes with 3,4-ethylenedioxythiophene (EDOT) linkers, and their neutral precursors, showed significant red-shifted absorption and emission compared to their thiophene-containing analogues, with one of the EDOT-derivatives emitting in the NIR region. Only the EDOT-linked trixylylborane tetracation was stable in aqueous solution, indicating that direct attachment of a thiophene or even 3-methylthiophene to the boron atom is insufficient to provide hydrolytic stability in aqueous solution. Further comparative analysis of the EDOT-linked trixylylborane tetracation and its bis-thiophene analogue revealed efficient photo-induced singlet oxygen production, with the consequent biological implications. Thus, both analogues bind strongly to ds-DNA and BSA, very efficiently enter living human cells, accumulate in several different cytoplasmic organelles with no toxic effect but, under intense visible light irradiation, they exhibit almost instantaneous and very strong cytotoxic effects, presumably attributed to singlet oxygen production. Thus, both compounds are intriguing theranostic agents, whose intracellular and probably intra-tissue location can be monitored by strong fluorescence, allowing switching on of the strong bioactivity by well-focused visible light.}, language = {en} } @article{HeRauchFriedrichetal.2021, author = {He, Jiang and Rauch, Florian and Friedrich, Alexandra and Krebs, Johannes and Krummenacher, Ivo and Bertermann, R{\"u}diger and Nitsch, J{\"o}rn and Braunschweig, Holger and Finze, Maik and Marder, Todd B.}, title = {Phenylpyridyl-fused boroles: a unique coordination mode and weak B-N coordination-induced dual fluorescence}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {9}, doi = {10.1002/anie.202013692}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256423}, pages = {4833-4840}, year = {2021}, abstract = {Phenylpyridyl-fused boroles [TipPBB1]\(_4\) and TipPBB2 were synthesized and their properties investigated. [TipPBB1]\(_4\) forms a tetramer in both the solid state and solution. TipPBB2 contains a 4-coordinate boron atom in the solid state but dissociates to give a 3-coordinate boron species in solution. TipPBB2 shows interesting temperature-dependent dual fluorescence in solution because of the equilibrium between 3- and 4-coordinate boron species due to weak N⋅⋅⋅B intermolecular coordination.}, language = {en} } @article{WuNitschMarder2021, author = {Wu, Zhu and Nitsch, J{\"o}rn and Marder, Todd B.}, title = {Persistent room-temperature phosphorence from purely organic molecules and multi-component systems}, series = {Advanced Optical Materials}, volume = {9}, journal = {Advanced Optical Materials}, number = {20}, doi = {doi.org/10.1002/adom.202100411}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256415}, year = {2021}, abstract = {Recently, luminophores showing efficient room-temperature phosphorescence (RTP) have gained tremendous interest due to their numerous applications. However, most phosphors are derived from transition metal complexes because of their intrinsic fast intersystem crossing (ISC) induced by strong spin-orbit coupling (SOC) constants of the heavy metal. Metal-free RTP materials are rare and have become a promising field because they are inexpensive and environmentally friendly. This review summarizes organic molecular materials with long triplet lifetimes at room temperature from the perspective of whether they stem from a molecular or multi-component system. Among purely organic phosphors, heteroatoms are usually introduced into the backbone in order to boost the singlet-triplet ISC rate constant. In multi-component systems, useful strategies such as host-guest, polymer matrix, copolymerization, and supramolecular assembly provide a rigid matrix to restrict nonradiative pathways thus realizing ultralong RTP.}, language = {en} } @article{GriesbeckMichailRauchetal.2019, author = {Griesbeck, Stefanie and Michail, Evripidis and Rauch, Florian and Ogasawara, Hiroaki and Wang, Chenguang and Sato, Yoshikatsu and Edkins, Robert M. and Zhang, Zuolun and Taki, Masayasu and Lambert, Christoph and Yamaguchi, Shigehiro and Marder, Todd B.}, title = {The Effect of Branching on the One- and Two-Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.201902461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212887}, pages = {13164 -- 13175}, year = {2019}, abstract = {Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.}, language = {en} } @article{MerzDietrichNitschetal.2020, author = {Merz, Julia and Dietrich, Lena and Nitsch, J{\"o}rn and Krummenacher, Ivo and Braunschweig, Holger and Moos, Michael and Mims, David and Lambert, Christoph and Marder, Todd B.}, title = {Synthesis, Photophysical and Electronic Properties of Mono-, Di-, and Tri-Amino-Substituted Ortho-Perylenes, and Comparison to the Tetra-Substituted Derivative}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {52}, doi = {10.1002/chem.202001475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217835}, pages = {12050 -- 12059}, year = {2020}, abstract = {We synthesized a series of new mono-, di-, tri- and tetra-substituted perylene derivatives with strong bis(para-methoxyphenyl)amine (DPA) donors at the uncommon 2,5,8,11-positions. The properties of our new donor-substituted perylenes were studied in detail to establish a structure-property relationship. Interesting trends and unusual properties are observed for this series of new perylene derivatives, such as a decreasing charge transfer (CT) character with increasing number of DPA moieties and individual reversible oxidations for each DPA moiety. Thus, (DPA)-Per possesses one reversible oxidation while (DPA)\(_{4}\)-Per has four. The mono- and di-substituted derivatives display unusually large Stokes shifts not previously reported for perylenes. Furthermore, transient absorption measurements of the new derivatives reveal an excited state with lifetimes of several hundred microseconds, which sensitizes singlet oxygen with quantum yields of up to 0.83.}, language = {en} } @article{KrebsHaehnelKrummenacheretal.2021, author = {Krebs, Johannes and Haehnel, Martin and Krummenacher, Ivo and Friedrich, Alexandra and Braunschweig, Holger and Finze, Maik and Ji, Lei and Marder, Todd B.}, title = {Synthesis and Structure of an o-Carboranyl-Substituted Three-Coordinate Borane Radical Anion}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100938}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256841}, pages = {8159-8167}, year = {2021}, abstract = {Bis(1-(4-tolyl)-carboran-2-yl)-(4-tolyl)-borane [(1-(4-MeC\(_{6}\)H\(_{4}\))-closo-1,2-C\(_{2}\)B\(_{10}\)H\(_{10}\)-2-)\(_{2}\)(4-MeC\(_{6}\)H\(_{4}\))B] (1), a new bis(o-carboranyl)-(R)-borane was synthesised by lithiation of the o-carboranyl precursor and subsequent salt metathesis reaction with (4-tolyl)BBr\(_{2}\). Cyclic voltammetry experiments on 1 show multiple distinct reduction events with a one-electron first reduction. In a selective reduction experiment the corresponding paramagnetic radical anion 1\(^{.-}\) was isolated and characterized. Single-crystal structure analyses allow an in-depth comparison of 1, 1\(^{.-}\), their calculated geometries, and the S\(_{1}\) excited state of 1. Photophysical studies of 1 show a charge transfer (CT) emission with low quantum yield in solution but a strong increase in the solid state. TD-DFT calculations were used to identify transition-relevant orbitals.}, language = {en} }