@article{KrebsHaehnelKrummenacheretal.2021, author = {Krebs, Johannes and Haehnel, Martin and Krummenacher, Ivo and Friedrich, Alexandra and Braunschweig, Holger and Finze, Maik and Ji, Lei and Marder, Todd B.}, title = {Synthesis and Structure of an o-Carboranyl-Substituted Three-Coordinate Borane Radical Anion}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100938}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256841}, pages = {8159-8167}, year = {2021}, abstract = {Bis(1-(4-tolyl)-carboran-2-yl)-(4-tolyl)-borane [(1-(4-MeC\(_{6}\)H\(_{4}\))-closo-1,2-C\(_{2}\)B\(_{10}\)H\(_{10}\)-2-)\(_{2}\)(4-MeC\(_{6}\)H\(_{4}\))B] (1), a new bis(o-carboranyl)-(R)-borane was synthesised by lithiation of the o-carboranyl precursor and subsequent salt metathesis reaction with (4-tolyl)BBr\(_{2}\). Cyclic voltammetry experiments on 1 show multiple distinct reduction events with a one-electron first reduction. In a selective reduction experiment the corresponding paramagnetic radical anion 1\(^{.-}\) was isolated and characterized. Single-crystal structure analyses allow an in-depth comparison of 1, 1\(^{.-}\), their calculated geometries, and the S\(_{1}\) excited state of 1. Photophysical studies of 1 show a charge transfer (CT) emission with low quantum yield in solution but a strong increase in the solid state. TD-DFT calculations were used to identify transition-relevant orbitals.}, language = {en} } @article{HuangHuKrummenacheretal.2022, author = {Huang, Mingming and Hu, Jiefeng and Krummenacher, Ivo and Friedrich, Alexandra and Braunschweig, Holger and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Base-Mediated Radical Borylation of Alkyl Sulfones}, series = {Chemistry—A European Journal}, volume = {28}, journal = {Chemistry—A European Journal}, number = {3}, doi = {10.1002/chem.202103866}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257281}, pages = {e202103866}, year = {2022}, abstract = {A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B\(_{2}\)neop\(_{2}\)), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.}, language = {en} }