@unpublished{ArrowsmithMattockBoehnkeetal.2018, author = {Arrowsmith, Merle and Mattock, James D. and B{\"o}hnke, Julian and Krummenacher, Ivo and Vargas, Alfredo and Braunschweig, Holger}, title = {Direct access to a cAAC-supported dihydrodiborene and its dianion}, series = {Chemical Communications}, journal = {Chemical Communications}, doi = {10.1039/C8CC01580E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164276}, year = {2018}, abstract = {The two-fold reduction of (cAAC)BHX\(_2\) (cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene; X = Cl, Br) provides a facile, high-yielding route to the dihydrodiborene (cAAC)\(_2\)B\(_2\)H\(_2\). The (chloro)hydroboryl anion reduction intermediate was successfully isolated using a crown ether. Overreduction of the diborene to its dianion [(cAAC)\(_2\)B\(_2\)H\(_2\)]\(^{2-}\) causes a decrease in the B-B bond order whereas the B-C bond orders increase.}, language = {en} } @unpublished{StennettMattockVollertetal.2018, author = {Stennett, Tom and Mattock, James and Vollert, Ivonne and Vargas, Alfredo and Braunschweig, Holger}, title = {Unsymmetrical, Cyclic Diborenes and Thermal Rearrangement to a Borylborylene}, series = {Angewandte Chemie, International Edition}, volume = {57}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201800671}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160258}, pages = {4098-4102}, year = {2018}, abstract = {Cyclic diboranes(4) based on a chelating monoanionic, benzylphosphine linker were prepared by boron-silicon exchange between arylsilanes and B\(_2\)Br\(_4\). Coordination of Lewis bases to the remaining sp\(^2\) boron atom yielded unsymmetrical sp\(^3\)-sp\(^3\) diboranes, which were reduced with KC\(_8\) to their corresponding trans-diborenes. These compounds were studied by a combination of spectroscopic methods, X-ray diffraction and DFT calculations. PMe\(_3\)-stabilized diborene 6 was found to undergo thermal rearrangement to gem- diborene 8. DFT calculations on 8 reveal a polar boron-boron bond, and indicate that the compound is best described as a borylborylene.}, language = {en} } @unpublished{WangArrowsmithBoehnkeetal.2017, author = {Wang, Sunewang R. and Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Dellermann, Theresa and Dewhurst, Rian D. and Kelch, Hauke and Krummenacher, Ivo and Mattock, James D. and M{\"u}ssig, Jonas H. and Thiess, Torsten and Vargas, Alfredo and Zhang, Jiji}, title = {Engineering a Small HOMO-LUMO Gap and Intramolecular B-B Hydroarylation by Diborene/Anthracene Orbital Intercalation}, series = {Angewandte Chemie, International Edition}, volume = {56}, journal = {Angewandte Chemie, International Edition}, number = {27}, doi = {10.1002/anie.201704063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148126}, pages = {8009-8013}, year = {2017}, abstract = {The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) (6) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C\(_{14}\)) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO-LUMO gap (HLG) and ultimately an unprecedented anthryl B-B bond hydroarylation. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV-vis absorption spectrum (THF, λ\(_{onset}\) = 788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B-B and C\(^1\)-H bonds of 8 were cleaved to give the cyclic 1,9-diboraanthracene 9.}, language = {en} } @unpublished{BraunschweigKrummenacherLichtenbergetal.2016, author = {Braunschweig, Holger and Krummenacher, Ivo and Lichtenberg, Crispin and Mattock, James and Sch{\"a}fer, Marius and Schmidt, Uwe and Schneider, Christoph and Steffenhagen, Thomas and Ullrich, Stefan and Vargas, Alfredo}, title = {Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201609601}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141981}, pages = {9}, year = {2016}, abstract = {Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1'-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions.}, subject = {Metallocene}, language = {en} } @unpublished{HermannCidMattocketal.2018, author = {Hermann, Alexander and Cid, Jessica and Mattock, James D. and Dewhurst, Rian D. and Krummenacher, Ivo and Vargas, Alfredo and Ingleson, Michael J. and Braunschweig, Holger}, title = {Diboryldiborenes: π-Conjugated B\(_4\) Chains Isoelectronic to the Butadiene Dication}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201805394}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167977}, year = {2018}, abstract = {sp\(^2\)-sp\(^3\) diborane species based on bis(catecholato)diboron and N-heterocyclic carbenes (NHCs) are subjected to catechol/bromide exchange selectively at the sp\(^3\) boron atom. The reduction of the resulting 1,1-dibromodiborane adducts led to reductive coupling and isolation of doubly NHC-stabilized 1,2-diboryldiborenes. These compounds are the first examples of molecules exhibiting pelectron delocalization over an all-boron chain.}, language = {en} } @unpublished{MuessigThalerDewhurstetal.2019, author = {Muessig, Jonas H. and Thaler, Melanie and Dewhurst, Rian D. and Paprocki, Valerie and Seufert, Jens and Mattock, James D. and Vargas, Alfredo and Braunschweig, Holger}, title = {Phosphine-Stabilized Diiododiborenes: Isolable Diborenes with Six Labile Bonds}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201814230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178608}, year = {2019}, abstract = {The lability of B=B, B-P and B-halide bonds is combined in the syntheses of the first diiododiborenes. In a series of reactivity tests, these diiododiborenes demonstrate cleavage of all six of their central bonds in different ways, leading to products of B=B hydrogenation and dihalogenation as well as halide exchange.}, language = {en} } @unpublished{StennettMattockPentecostetal.2018, author = {Stennett, Tom and Mattock, James and Pentecost, Leanne and Vargas, Alfredo and Braunschweig, Holger}, title = {Chelated Diborenes and their Inverse-Electron-Demand Diels- Alder Reactions with Dienes}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201809217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178268}, year = {2018}, abstract = {A doubly base-stabilized diborane based on a benzylphosphine linker was prepared by a salt elimination reaction between 2-LiC\(_6\)H\(_4\)CH\(_2\)PCy\(_2\).Et\(_2\)O and B\(_2\)Br\(_4\). This compound was reduced with KC8 to its corresponding diborene, with the benzylphosphine forming a five-membered chelate. The diborene reacts with butadiene, 2-trimethylsiloxy-1,3-butadiene and isoprene to form 4,5-diboracyclohexenes, which interconvert between their 1,1- (geminal) and 1,2- (vicinal) chelated isomers. The 1,1-chelated diborene undergoes a halide-catalysed isomerisation into its thermodynamically favoured 1,2-isomer, which undergoes Diels-Alder reactions more slowly than the kinetic product.}, language = {en} } @article{BraunschweigEwingGhoshetal.2016, author = {Braunschweig, Holger and Ewing, William C. and Ghosh, Sundargopal and Kramer, Thomas and Mattock, James D. and {\"O}streicher, Sebastian and Vargas, Alfredo and Werner, Christine}, title = {Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters}, series = {Chemical Science}, volume = {7}, journal = {Chemical Science}, number = {1}, doi = {10.1039/c5sc03206g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191511}, pages = {109-116}, year = {2016}, abstract = {Treatment of an anionic dimanganaborylene complex ([{Cp(CO)\(_2\)Mn}\(_2\)B]\(^-\)) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe\(_2\)) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M\(_2\)B\(_2\) cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B\(_2\)M\(_2\) units and M\(_4\) (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy\(_3\))\(_2\)) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d\(^{10}\)-d\(^{10}\) dispersion interactions between the copper and platinum fragments.}, language = {en} } @unpublished{WangArrowsmithBraunschweigetal.2017, author = {Wang, Sunewang Rixin and Arrowsmith, Merle and Braunschweig, Holger and Dewhurst, Rian and D{\"o}mling, Michael and Mattock, James and Pranckevicius, Conor and Vargas, Alfredo}, title = {Monomeric 16-Electron π-Diborene Complexes of Zn(II) and Cd(II)}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.7b06644}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153058}, year = {2017}, abstract = {Despite the prevalence of stable π-complexes of most d\(^{10}\) metals, such as Cu(I) and Ni(0), with ethylene and other olefins, complexation of d\(^{10}\) Zn(II) to simple olefins is too weak to form isolable complexes due to the metal ion's limited capacity for π-backdonation. By employing more strongly donating π- ligands, namely neutral diborenes with a high-lying π(B=B) or- bital, monomeric 16-electron M(II)-diborene (M = Zn, Cd) π- complexes were synthesized in good yields. Metal-B2 π- interactions in both the solid and solution state were confirmed by single-crystal X-ray analyses and their solution NMR and UV-vis absorption spectroscopy, respectively. The M(II) centers adopt a trigonal planar geometry and interact almost symmetrically with both boron atoms. The MB2 planes significantly twist out of the MX\(_2\) planes about the M-centroid(B-B) vector, with angles rang- ing from 47.0° to 85.5°, depending on the steric interactions be- tween the diborene ligand and the MX\(_2\) fragment.}, language = {en} } @article{EwingDellermannAngelWongetal.2020, author = {Ewing, William C. and Dellermann, Theresa and Angel Wong, Y. T. and Mattock, James D. and Vargas, Alfredo and Bryce, David L. and Dewhurst, Rian D. and Braunschweig, Holger}, title = {\(\pi\)-Complexes of Diborynes with Main Group Atoms}, series = {Chemistry - An Asian Journal}, volume = {15}, journal = {Chemistry - An Asian Journal}, number = {10}, doi = {10.1002/asia.202000185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214677}, pages = {1553 -- 1557}, year = {2020}, abstract = {We present herein an in-depth study of complexes in which a molecule containing a boron-boron triple bond is bound to tellurate cations. The analysis allows the description of these salts as true π complexes between the B-B triple bond and the tellurium center. These complexes thus extend the well-known Dewar-Chatt-Duncanson model of bonding to compounds made up solely of p block elements. Structural, spectroscopic and computational evidence is offered to argue that a set of recently reported heterocycles consisting of phenyltellurium cations complexed to diborynes bear all the hallmarks of \(\pi\)-complexes in the \(\pi\)-complex/metallacycle continuum envisioned by Joseph Chatt. Described as such, these compounds are unique in representing the extreme of a metal-free continuum with conventional unsaturated three-membered rings (cyclopropenes, azirenes, borirenes) occupying the opposite end.}, language = {en} } @article{SchmidtWernerArrowsmithetal.2020, author = {Schmidt, Uwe and Werner, Luis and Arrowsmith, Merle and Deissenberger, Andrea and Hermann, Alexander and Hofmann, Alexander and Ullrich, Stefan and Mattock, James D. and Vargas, Alfredo and Braunschweig, Holger}, title = {Trans-selektive Dihydroborierung eines cis-Diborens durch Insertion: Synthese eines linearen sp\(^3\)-sp\(^2\)-sp\(^3\)-Triborans und anschließende Kationisierung}, series = {Angewandte Chemie}, volume = {132}, journal = {Angewandte Chemie}, number = {1}, doi = {10.1002/ange.201911645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219713}, pages = {333-337}, year = {2020}, abstract = {Die Reaktion zwischen Aryl- und Amino(dihydro)boranen und Dibora[2]ferrocenophan 1 f{\"u}hrt zur Bildung von 1,3-trans-Dihydrotriboranen durch formale Hydrierung und Insertion eines Borylens in die B=B Doppelbindung. Die Aryltriboran-Derivate unterliegen einer reversiblen Photoisomerisierung zugunsten eines cis-1,2-μ-H-3-Hydrotriborans, w{\"a}hrend eine Hydridabstraktion zu kationischen Triboranen f{\"u}hrt, welche die ersten doppelt basenstabilisierten B\(_3\)H\(_4\)\(^+\)-Analoga darstellen.}, language = {de} } @article{SchmidtWernerArrowsmithetal.2020, author = {Schmidt, Uwe and Werner, Luis and Arrowsmith, Merle and Deissenberger, Andrea and Hermann, Alexander and Hofmann, Alexander and Ullrich, Stefan and Mattock, James D. and Vargas, Alfredo and Braunschweig, Holger}, title = {trans-Selective Insertional Dihydroboration of a cis-Diborene: Synthesis of Linear sp\(^3\)-sp\(^2\)-sp\(^3\)-Triboranes and Subsequent Cationization}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {1}, doi = {10.1002/anie.201911645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208090}, pages = {325-329}, year = {2020}, abstract = {The reaction of aryl- and amino(dihydro)boranes with dibora[2]ferrocenophane 1 leads to the formation 1,3-trans -dihydrotriboranes by formal hydrogenation and insertion of a borylene unit into the B=B bond. The aryltriborane derivatives undergo reversible photoisomerization to the cis -1,2-μ-H-3-hydrotriboranes, while hydride abstraction affords cationic triboranes, which represent the first doubly base-stabilized B3H4\(^+\) analogues.}, language = {en} }