@article{JarickVolckmarPuetteretal.2014, author = {Jarick, I. and Volckmar, A. L. and P{\"u}tter, C. and Pechlivanis, S. and Nguyen, T. T. and Dauvermann, M. R. and Beck, S. and Albayrak, {\"O}. and Scherag, S. and Gilsbach, S. and Cichon, S. and Hoffmann, P. and Degenhardt, F. and N{\"o}then, M. M. and Schreiber, S. and Wichmann, H. E. and J{\"o}ckel, K. H. and Heinrich, J. and Tiesler, C. M. T. and Faraone, S. V. and Walitza, S. and Sinzig, J. and Freitag, C. and Meyer, J. and Herpertz-Dahlmann, B. and Lehmkuhl, G. and Renner, T. J. and Warnke, A. and Romanos, M. and Lesch, K. P. and Reif, A. and Schimmelmann, B. G. and Hebebrand, J. and Scherag, A. and Hinney, A.}, title = {Genome-wide analysis of rare copy number variations reveals PARK2 as a candidate gene for attention-deficit/hyperactivity disorder}, series = {Molecular Psychiatry}, volume = {19}, journal = {Molecular Psychiatry}, number = {19}, doi = {10.1038/mp.2012.161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121131}, pages = {115-21}, year = {2014}, abstract = {Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neurodevelopmental disorder. Genetic loci have not yet been identified by genome-wide association studies. Rare copy number variations (CNVs), such as chromosomal deletions or duplications, have been implicated in ADHD and other neurodevelopmental disorders. To identify rare (frequency ≤1\%) CNVs that increase the risk of ADHD, we performed a whole-genome CNV analysis based on 489 young ADHD patients and 1285 adult population-based controls and identified one significantly associated CNV region. In tests for a global burden of large (>500 kb) rare CNVs, we observed a nonsignificant (P=0.271) 1.126-fold enriched rate of subjects carrying at least one such CNV in the group of ADHD cases. Locus-specific tests of association were used to assess if there were more rare CNVs in cases compared with controls. Detected CNVs, which were significantly enriched in the ADHD group, were validated by quantitative (q)PCR. Findings were replicated in an independent sample of 386 young patients with ADHD and 781 young population-based healthy controls. We identified rare CNVs within the parkinson protein 2 gene (PARK2) with a significantly higher prevalence in ADHD patients than in controls \((P=2.8 × 10^{-4})\) after empirical correction for genome-wide testing). In total, the PARK2 locus (chr 6: 162 659 756-162 767 019) harboured three deletions and nine duplications in the ADHD patients and two deletions and two duplications in the controls. By qPCR analysis, we validated 11 of the 12 CNVs in ADHD patients \((P=1.2 × 10^{-3})\) after empirical correction for genome-wide testing). In the replication sample, CNVs at the PARK2 locus were found in four additional ADHD patients and one additional control \((P=4.3 × 10^{-2})\). Our results suggest that copy number variants at the PARK2 locus contribute to the genetic susceptibility of ADHD. Mutations and CNVs in PARK2 are known to be associated with Parkinson disease.}, language = {en} } @article{LudwigSaemannAlexanderetal.2013, author = {Ludwig, K. U. and S{\"a}mann, P. and Alexander, M. and Becker, J. and Bruder, J. and Moll, K. and Spieler, D. and Czisch, M. and Warnke, A. and Docherty, S. J. and Davis, O. S. P. and Plomin, R. and N{\"o}then, M. M. and Landerl, K. and M{\"u}ller-Myhsok, B. and Hoffmann, P. and Schumacher, J. and Schulte-K{\"o}rne, G. and Czamara, D.}, title = {A common variant in Myosin-18B contributes to mathematical abilities in children with dyslexia and intraparietal sulcus variability in adults}, series = {Translational Psychiatry}, volume = {3}, journal = {Translational Psychiatry}, number = {e229}, doi = {10.1038/tp.2012.148}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131513}, year = {2013}, abstract = {The ability to perform mathematical tasks is required in everyday life. Although heritability estimates suggest a genetic contribution, no previous study has conclusively identified a genetic risk variant for mathematical performance. Research has shown that the prevalence of mathematical disabilities is increased in children with dyslexia. We therefore correlated genome-wide data of 200 German children with spelling disability, with available quantitative data on mathematic ability. Replication of the top findings in additional dyslexia samples revealed that rs133885 was a genome-wide significant marker for mathematical abilities\((P_{comb}=7.71 x 10^{-10}, n=699)\), with an effect size of 4.87\%. This association was also found in a sample from the general population (P=0.048, n=1080), albeit with a lower effect size. The identified variant encodes an amino-acid substitution in MYO18B, a protein with as yet unknown functions in the brain. As areas of the parietal cortex, in particular the intraparietal sulcus (IPS), are involved in numerical processing in humans, we investigated whether rs133885 was associated with IPS morphology using structural magnetic resonance imaging data from 79 neuropsychiatrically healthy adults. Carriers of the MYO18B risk-genotype displayed a significantly lower depth of the right IPS. This validates the identified association between rs133885 and mathematical disability at the level of a specific intermediate phenotype.}, language = {en} }