@article{TianGaovonderHeydeetal.2018, author = {Tian, Yuehui and Gao, Shiqiang and von der Heyde, Eva Laura and Hallmann, Armin and Nagel, Georg}, title = {Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases}, series = {BMC Biology}, volume = {16}, journal = {BMC Biology}, number = {144}, doi = {10.1186/s12915-018-0613-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177516}, year = {2018}, abstract = {Background: The green algae Chlamydomonas reinhardtii and Volvox carteri are important models for studying light perception and response, expressing many different photoreceptors. More than 10 opsins were reported in C. reinhardtii, yet only two—the channelrhodopsins—were functionally characterized. Characterization of new opsins would help to understand the green algae photobiology and to develop new tools for optogenetics. Results: Here we report the characterization of a novel opsin family from these green algae: light-inhibited guanylyl cyclases regulated through a two-component-like phosphoryl transfer, called "two-component cyclase opsins" (2c-Cyclops). We prove the existence of such opsins in C. reinhardtii and V. carteri and show that they have cytosolic N- and C-termini, implying an eight-transmembrane helix structure. We also demonstrate that cGMP production is both light-inhibited and ATP-dependent. The cyclase activity of Cr2c-Cyclop1 is kept functional by the ongoing phosphorylation and phosphoryl transfer from the histidine kinase to the response regulator in the dark, proven by mutagenesis. Absorption of a photon inhibits the cyclase activity, most likely by inhibiting the phosphoryl transfer. Overexpression of Vc2c-Cyclop1 protein in V. carteri leads to significantly increased cGMP levels, demonstrating guanylyl cyclase activity of Vc2c-Cyclop1 in vivo. Live cell imaging of YFP-tagged Vc2c-Cyclop1 in V. carteri revealed a development-dependent, layer-like structure at the immediate periphery of the nucleus and intense spots in the cell periphery. Conclusions: Cr2c-Cyclop1 and Vc2c-Cyclop1 are light-inhibited and ATP-dependent guanylyl cyclases with an unusual eight-transmembrane helix structure of the type I opsin domain which we propose to classify as type Ib, in contrast to the 7 TM type Ia opsins. Overexpression of Vc2c-Cyclop1 protein in V. carteri led to a significant increase of cGMP, demonstrating enzyme functionality in the organism of origin. Fluorescent live cell imaging revealed that Vc2c-Cyclop1 is located in the periphery of the nucleus and in confined areas at the cell periphery.}, language = {en} } @article{BeckYuStrzelczykPaulsetal.2018, author = {Beck, Sebastian and Yu-Strzelczyk, Jing and Pauls, Dennis and Constantin, Oana M. and Gee, Christine E. and Ehmann, Nadine and Kittel, Robert J. and Nagel, Georg and Gao, Shiqiang}, title = {Synthetic light-activated ion channels for optogenetic activation and inhibition}, series = {Frontiers in Neuroscience}, volume = {12}, journal = {Frontiers in Neuroscience}, number = {643}, doi = {10.3389/fnins.2018.00643}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177520}, year = {2018}, abstract = {Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2\(^{2+}\)) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca\(^{2+}\) might be desirable. Moreover, there is need for an efficient light-gated potassium (K\(^{+}\)) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca\(^{2+}\) and K\(^{+}\) in cell physiology, light-activated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca\(^{2+}\) or for K\(^{+}\), respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca\(^{2+}\)-permeant channel, and to body extension when expressing the light-sensitive K\(^{+}\) channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons.}, language = {en} } @article{ScheibBroserConstantinetal.2018, author = {Scheib, Ulrike and Broser, Matthias and Constantin, Oana M. and Yang, Shang and Gao, Shiqiang and Mukherjee, Shatanik and Stehfest, Katja and Nagel, Georg and Gee, Christine E. and Hegemann, Peter}, title = {Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 {\AA} structure of the adenylyl cyclase domain}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-04428-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228517}, pages = {2046, 1-15}, year = {2018}, abstract = {The cyclic nucleotides cAMP and cGMP are important second messengers that orchestrate fundamental cellular responses. Here, we present the characterization of the rhodopsinguanylyl cyclase from Catenaria anguillulae (CaRhGC), which produces cGMP in response to green light with a light to dark activity ratio > 1000. After light excitation the putative signaling state forms with tau = 31 ms and decays with tau = 570 ms. Mutations (up to 6) within the nucleotide binding site generate rhodopsin-adenylyl cyclases (CaRhACs) of which the double mutated YFP-CaRhAC (E497K/C566D) is the most suitable for rapid cAMP production in neurons. Furthermore, the crystal structure of the ligand-bound AC domain (2.25 angstrom) reveals detailed information about the nucleotide binding mode within this recently discovered class of enzyme rhodopsin. Both YFP-CaRhGC and YFP-CaRhAC are favorable optogenetic tools for non-invasive, cell-selective, and spatio-temporally precise modulation of cAMP/cGMP with light.}, language = {en} } @article{GaoNagpalSchneideretal.2015, author = {Gao, Shiqiang and Nagpal, Jatin and Schneider, Martin W. and Kozjak-Pavlovic, Vera and Nagel, Georg and Gottschalk, Alexander}, title = {Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8046}, doi = {10.1038/ncomms9046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148197}, year = {2015}, abstract = {Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ~17 cGMPs\(^{-1}\)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O\(_2\)/CO\(_2\) sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.}, language = {en} } @article{SchultheisLiewaldBambergetal.2011, author = {Schultheis, Christian and Liewald, Jana Fiona and Bamberg, Ernst and Nagel, Georg and Gottschalk, Alexander}, title = {Optogenetic Long-Term Manipulation of Behavior and Animal Development}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0018766}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141250}, pages = {e18766}, year = {2011}, abstract = {Channelrhodopsin-2 (ChR2) is widely used for rapid photodepolarization of neurons, yet, as it requires high-intensity blue light for activation, it is not suited for long-term in vivo applications, e. g. for manipulations of behavior, or photoactivation of neurons during development. We used "slow" ChR2 variants with mutations in the C128 residue, that exhibit delayed off-kinetics and increased light sensitivity in Caenorhabditis elegans. Following a 1 s light pulse, we could photodepolarize neurons and muscles for minutes (and with repeated brief stimulation, up to days) with low-intensity light. Photoactivation of ChR2(C128S) in command interneurons elicited long-lasting alterations in locomotion. Finally, we could optically induce profound changes in animal development: Long-term photoactivation of ASJ neurons, which regulate larval growth, bypassed the constitutive entry into the "dauer" larval state in daf-11 mutants. These lack a guanylyl cyclase, which possibly renders ASJ neurons hyperpolarized. Furthermore, photostimulated ASJ neurons could acutely trigger dauer-exit. Thus, slow ChR2s can be employed to long-term photoactivate behavior and to trigger alternative animal development.}, language = {en} } @article{HuangDingRoelfsemaetal.2021, author = {Huang, Shouguang and Ding, Meiqi and Roelfsema, M. Rob G. and Dreyer, Ingo and Scherzer, S{\"o}nke and Al-Rasheid, Khaled A. S and Gao, Shiqiang and Nagel, Georg and Hedrich, Rainer and Konrad, Kai R.}, title = {Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {28}, doi = {10.1126/sciadv.abg4619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260925}, year = {2021}, abstract = {Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO\(_2\) and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl\(^-\) and NO\(_3\)\(^-\) currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+. As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata.}, language = {en} } @article{DuanNagelGao2019, author = {Duan, Xiaodong and Nagel, Georg and Gao, Shiqiang}, title = {Mutated channelrhodopsins with increased sodium and calcium permeability}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {4}, issn = {2076-3417}, doi = {10.3390/app9040664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197435}, pages = {664}, year = {2019}, abstract = {(1) Background: After the discovery and application of Chlamydomonas reinhardtii channelrhodopsins, the optogenetic toolbox has been greatly expanded with engineered and newly discovered natural channelrhodopsins. However, channelrhodopsins of higher Ca\(^{2+}\) conductance or more specific ion permeability are in demand. (2) Methods: In this study, we mutated the conserved aspartate of the transmembrane helix 4 (TM4) within Chronos and PsChR and compared them with published ChR2 aspartate mutants. (3) Results: We found that the ChR2 D156H mutant (XXM) showed enhanced Na\(^+\) and Ca\(^{2+}\) conductance, which was not noticed before, while the D156C mutation (XXL) influenced the Na\(^+\) and Ca\(^{2+}\) conductance only slightly. The aspartate to histidine and cysteine mutations of Chronos and PsChR also influenced their photocurrent, ion permeability, kinetics, and light sensitivity. Most interestingly, PsChR D139H showed a much-improved photocurrent, compared to wild type, and even higher Na+ selectivity to H\(^+\) than XXM. PsChR D139H also showed a strongly enhanced Ca\(^{2+}\) conductance, more than two-fold that of the CatCh. (4) Conclusions: We found that mutating the aspartate of the TM4 influences the ion selectivity of channelrhodopsins. With the large photocurrent and enhanced Na\(^+\) selectivity and Ca\(^{2+}\) conductance, XXM and PsChR D139H are promising powerful optogenetic tools, especially for Ca\(^{2+}\) manipulation.}, language = {en} } @article{PanzerZhangKonteetal.2021, author = {Panzer, Sabine and Zhang, Chong and Konte, Tilen and Br{\"a}uer, Celine and Diemar, Anne and Yogendran, Parathy and Yu-Strzelczyk, Jing and Nagel, Georg and Gao, Shiqiang and Terpitz, Ulrich}, title = {Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates}, series = {Frontiers in Molecular Biosciences}, volume = {8}, journal = {Frontiers in Molecular Biosciences}, issn = {2296-889X}, doi = {10.3389/fmolb.2021.750528}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249248}, year = {2021}, abstract = {Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications.}, language = {en} } @article{TangYangNageletal.2021, author = {Tang, Ruijing and Yang, Shang and Nagel, Georg and Gao, Shiqiang}, title = {mem-iLID, a fast and economic protein purification method}, series = {Bioscience Reports}, volume = {41}, journal = {Bioscience Reports}, number = {7}, doi = {10.1042/BSR20210800}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261420}, year = {2021}, abstract = {Protein purification is the vital basis to study the function, structure and interaction of proteins. Widely used methods are affinity chromatography-based purifications, which require different chromatography columns and harsh conditions, such as acidic pH and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. Here we established an easy and fast purification method for soluble proteins under mild conditions, based on the light-induced protein dimerization system improved light-induced dimer (iLID), which regulates protein binding and release with light. We utilize the biological membrane, which can be easily separated by centrifugation, as the port to anchor the target proteins. In Xenopus laevis oocyte and Escherichia coli, the blue light-sensitive part of iLID, AsLOV2-SsrA, was targeted to the plasma membrane by different membrane anchors. The other part of iLID, SspB, was fused with the protein of interest (POI) and expressed in the cytosol. The SspB-POI can be captured to the membrane fraction through light-induced binding to AsLOV2-SsrA and then released purely to fresh buffer in the dark after simple centrifugation and washing. This method, named mem-iLID, is very flexible in scale and economic. We demonstrate the quickly obtained yield of two pure and fully functional enzymes: a DNA polymerase and a light-activated adenylyl cyclase. Furthermore, we also designed a new SspB mutant for better dissociation and less interference with the POI, which could potentially facilitate other optogenetic manipulations of protein-protein interaction.}, language = {en} } @article{ScholzGuanNieberleretal.2017, author = {Scholz, Nicole and Guan, Chonglin and Nieberler, Matthias and Grotmeyer, Alexander and Maiellaro, Isabella and Gao, Shiqiang and Beck, Sebastian and Pawlak, Matthias and Sauer, Markus and Asan, Esther and Rothemund, Sven and Winkler, Jana and Pr{\"o}mel, Simone and Nagel, Georg and Langenhan, Tobias and Kittel, Robert J}, title = {Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons}, series = {eLife}, volume = {6}, journal = {eLife}, number = {e28360}, doi = {10.7554/eLife.28360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170520}, year = {2017}, abstract = {Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.}, language = {en} } @article{HegemannNagel2013, author = {Hegemann, Peter and Nagel, Georg}, title = {From channelrhodopsins to optogenetics}, series = {EMBO Molecular Medicine}, volume = {5}, journal = {EMBO Molecular Medicine}, number = {2}, doi = {10.1002/emmm.201202387}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129036}, pages = {173-176}, year = {2013}, abstract = {We did not expect that research on the molecular mechanism of algal phototaxis or archaeal light-driven ion transport might interest readers of a medical journal when we conceived and performed our experiments a decade ago. On the other hand, it did not escape our attention that channelrhodopsin is helping an ever-increasing number of researchers to address their specific questions. For example, the channelrhodopsin approach is used to study the molecular events during the induction of synaptic plasticity or to map long-range connections from one side of the brain to the other, and to map the spatial location of inputs on the dendritic tree of individual neurons. The current applications have been summarized in a number of recent reviews (Fenno et al, 2011; Yizhar et al, 2011; Zhang et al, 2011). Here, we give personal insight into the history of the discovery of channelrhodopsin and a biophysical perspective on this remarkable class of proteins that has been the main topic of our research since the 1990s.}, language = {en} } @article{ZhouDingDuanetal.2021, author = {Zhou, Yang and Ding, Meiqi and Duan, Xiaodong and Konrad, Kai R. and Nagel, Georg and Gao, Shiqiang}, title = {Extending the Anion Channelrhodopsin-Based Toolbox for Plant Optogenetics}, series = {Membranes}, volume = {11}, journal = {Membranes}, number = {4}, issn = {2077-0375}, doi = {10.3390/membranes11040287}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236617}, year = {2021}, abstract = {Optogenetics was developed in the field of neuroscience and is most commonly using light-sensitive rhodopsins to control the neural activities. Lately, we have expanded this technique into plant science by co-expression of a chloroplast-targeted β-carotene dioxygenase and an improved anion channelrhodopsin GtACR1 from the green alga Guillardia theta. The growth of Nicotiana tabacum pollen tube can then be manipulated by localized green light illumination. To extend the application of analogous optogenetic tools in the pollen tube system, we engineered another two ACRs, GtACR2, and ZipACR, which have different action spectra, light sensitivity and kinetic features, and characterized them in Xenopus laevis oocytes, Nicotiana benthamiana leaves and N. tabacum pollen tubes. We found that the similar molecular engineering method used to improve GtACR1 also enhanced GtACR2 and ZipACR performance in Xenopus laevis oocytes. The ZipACR1 performed in N. benthamiana mesophyll cells and N. tabacum pollen tubes with faster kinetics and reduced light sensitivity, allowing for optogenetic control of anion fluxes with better temporal resolution. The reduced light sensitivity would potentially facilitate future application in plants, grown under low ambient white light, combined with an optogenetic manipulation triggered by stronger green light.}, language = {en} } @article{vomDahlMuellerBerishaetal.2022, author = {vom Dahl, Christian and M{\"u}ller, Christoph Emanuel and Berisha, Xhevat and Nagel, Georg and Zimmer, Thomas}, title = {Coupling the cardiac voltage-gated sodium channel to channelrhodopsin-2 generates novel optical switches for action potential studies}, series = {Membranes}, volume = {12}, journal = {Membranes}, number = {10}, issn = {2077-0375}, doi = {10.3390/membranes12100907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288228}, year = {2022}, abstract = {Voltage-gated sodium (Na\(^+\)) channels respond to short membrane depolarization with conformational changes leading to pore opening, Na\(^+\) influx, and action potential (AP) upstroke. In the present study, we coupled channelrhodopsin-2 (ChR2), the key ion channel in optogenetics, directly to the cardiac voltage-gated Na\(^+\) channel (Na\(_v\)1.5). Fusion constructs were expressed in Xenopus laevis oocytes, and electrophysiological recordings were performed by the two-microelectrode technique. Heteromeric channels retained both typical Na\(_v\)1.5 kinetics and light-sensitive ChR2 properties. Switching to the current-clamp mode and applying short blue-light pulses resulted either in subthreshold depolarization or in a rapid change of membrane polarity typically seen in APs of excitable cells. To study the effect of individual K\(^+\) channels on the AP shape, we co-expressed either K\(_v\)1.2 or hERG with one of the Na\(_v\)1.5-ChR2 fusions. As expected, both delayed rectifier K\(^+\) channels shortened AP duration significantly. K\(_v\)1.2 currents remarkably accelerated initial repolarization, whereas hERG channel activity efficiently restored the resting membrane potential. Finally, we investigated the effect of the LQT3 deletion mutant ΔKPQ on the AP shape and noticed an extremely prolonged AP duration that was directly correlated to the size of the non-inactivating Na\(^+\) current fraction. In conclusion, coupling of ChR2 to a voltage-gated Na\(^+\) channel generates optical switches that are useful for studying the effect of individual ion channels on the AP shape. Moreover, our novel optogenetic approach provides the potential for an application in pharmacology and optogenetic tissue-engineering.}, language = {en} } @article{TianYangNageletal.2022, author = {Tian, Yuehui and Yang, Shang and Nagel, Georg and Gao, Shiqiang}, title = {Characterization and modification of light-sensitive phosphodiesterases from choanoflagellates}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {1}, issn = {2218-273X}, doi = {10.3390/biom12010088}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254769}, year = {2022}, abstract = {Enzyme rhodopsins, including cyclase opsins (Cyclops) and rhodopsin phosphodiesterases (RhoPDEs), were recently discovered in fungi, algae and protists. In contrast to the well-developed light-gated guanylyl/adenylyl cyclases as optogenetic tools, ideal light-regulated phosphodiesterases are still in demand. Here, we investigated and engineered the RhoPDEs from Salpingoeca rosetta, Choanoeca flexa and three other protists. All the RhoPDEs (fused with a cytosolic N-terminal YFP tag) can be expressed in Xenopus oocytes, except the AsRhoPDE that lacks the retinal-binding lysine residue in the last (8th) transmembrane helix. An N296K mutation of YFP::AsRhoPDE enabled its expression in oocytes, but this mutant still has no cGMP hydrolysis activity. Among the RhoPDEs tested, SrRhoPDE, CfRhoPDE1, 4 and MrRhoPDE exhibited light-enhanced cGMP hydrolysis activity. Engineering SrRhoPDE, we obtained two single point mutants, L623F and E657Q, in the C-terminal catalytic domain, which showed ~40 times decreased cGMP hydrolysis activity without affecting the light activation ratio. The molecular characterization and modification will aid in developing ideal light-regulated phosphodiesterase tools in the future.}, language = {en} } @article{TianNagelGao2021, author = {Tian, Yuehui and Nagel, Georg and Gao, Shiqiang}, title = {An engineered membrane-bound guanylyl cyclase with light-switchable activity}, series = {BMC Biology}, volume = {19}, journal = {BMC Biology}, number = {1}, doi = {10.1186/s12915-021-00978-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259181}, pages = {54}, year = {2021}, abstract = {Background Microbial rhodopsins vary in their chemical properties, from light sensitive ion transport to different enzymatic activities. Recently, a novel family of two-component Cyclase (rhod)opsins (2c-Cyclop) from the green algae Chlamydomonas reinhardtii and Volvox carteri was characterized, revealing a light-inhibited guanylyl cyclase (GC) activity. More genes similar to 2c-Cyclop exist in algal genomes, but their molecular and physiological functions remained uncharacterized. Results Chlamyopsin-5 (Cop5) from C. reinhardtii is related to Cr2c-Cyclop1 (Cop6) and can be expressed in Xenopus laevis oocytes, but shows no GC activity. Here, we exchanged parts of Cop5 with the corresponding ones of Cr2c-Cyclop1. When exchanging the opsin part of Cr2c-Cyclop1 with that of Cop5, we obtained a bi-stable guanylyl cyclase (switch-Cyclop1) whose activity can be switched by short light flashes. The GC activity of switch-Cyclop1 is increased for hours by a short 380 nm illumination and switched off (20-fold decreased) by blue or green light. switch-Cyclop1 is very light-sensitive and can half-maximally be activated by ~ 150 photons/nm2 of 380 nm (~ 73 J/m2) or inhibited by ~ 40 photons/nm\(^2\) of 473 nm (~ 18 J/m\(^2\)). Conclusions This engineered guanylyl cyclase is the first light-switchable enzyme for cGMP level regulation. Light-regulated cGMP production with high light-sensitivity is a promising technique for the non-invasive investigation of the effects of cGMP signaling in many different tissues.}, language = {en} }