@article{AmmarThahoulyHanaueretal.2015, author = {Ammar, Mohamed Raafet and Thahouly, Tamou and Hanauer, Andr{\´e} and Stegner, David and Nieswandt, Bernhard and Vitale, Nicolas}, title = {PLD1 participates in BDNF-induced signalling in cortical neurons}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {14778}, doi = {10.1038/srep14778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139962}, year = {2015}, abstract = {The brain-derived neurotrophic factor BDNF plays a critical role in neuronal development and the induction of L-LTP at glutamatergic synapses in several brain regions. However, the cellular and molecular mechanisms underlying these BDNF effects have not been firmly established. Using in vitro cultures of cortical neurons from knockout mice for Pld1 and Rsk2, BDNF was observed to induce a rapid RSK2-dependent activation of PLD and to stimulate BDNF ERK1/2-CREB and mTor-S6K signalling pathways, but these effects were greatly reduced in Pld1\(^{-/-}\) neurons. Furthermore, phospho-CREB did not accumulate in the nucleus, whereas overexpression of PLD1 amplified the BDNF-dependent nuclear recruitment of phospho-ERK1/2 and phospho-CREB. This BDNF retrograde signalling was prevented in cells silenced for the scaffolding protein PEA15, a protein which complexes with PLD1, ERK1/2, and RSK2 after BDNF treatment. Finally PLD1, ERK1/2, and RSK2 partially colocalized on endosomal structures, suggesting that these proteins are part of the molecular module responsible for BDNF signalling in cortical neurons.}, language = {en} } @article{BalkenholKaltdorfMammadovaBachetal.2020, author = {Balkenhol, Johannes and Kaltdorf, Kristin V. and Mammadova-Bach, Elmina and Braun, Attila and Nieswandt, Bernhard and Dittrich, Marcus and Dandekar, Thomas}, title = {Comparison of the central human and mouse platelet signaling cascade by systems biological analysis}, series = {BMC Genomics}, volume = {21}, journal = {BMC Genomics}, doi = {10.1186/s12864-020-07215-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230377}, year = {2020}, abstract = {Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81\%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences.}, language = {en} } @article{BeckStegnerLorochetal.2021, author = {Beck, Sarah and Stegner, David and Loroch, Stefan and Baig, Ayesha A. and G{\"o}b, Vanessa and Schumbutzki, Cornelia and Eilers, Eva and Sickmann, Albert and May, Frauke and Nolte, Marc W. and Panousis, Con and Nieswandt, Bernhard}, title = {Generation of a humanized FXII knock-in mouse-A powerful model system to test novel anti-thrombotic agents}, series = {Journal of Thrombosis and Haemostasis}, volume = {19}, journal = {Journal of Thrombosis and Haemostasis}, number = {11}, doi = {10.1111/jth.15488}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259567}, pages = {2835-2840}, year = {2021}, abstract = {Background Effective inhibition of thrombosis without generating bleeding risks is a major challenge in medicine. Accumulating evidence suggests that this can be achieved by inhibition of coagulation factor XII (FXII), as either its knock-out or inhibition in animal models efficiently reduced thrombosis without affecting normal hemostasis. Based on these findings, highly specific inhibitors for human FXII(a) are under development. However, currently, in vivo studies on their efficacy and safety are impeded by the lack of an optimized animal model expressing the specific target, that is, human FXII. Objective The primary objective of this study is to develop and functionally characterize a humanized FXII mouse model. Methods A humanized FXII mouse model was generated by replacing the murine with the human F12 gene (genetic knock-in) and tested it in in vitro coagulation assays and in in vivo thrombosis models. Results These hF12\(^{KI}\) mice were indistinguishable from wild-type mice in all tested assays of coagulation and platelet function in vitro and in vivo, except for reduced expression levels of hFXII compared to human plasma. Targeting FXII by the anti-human FXIIa antibody 3F7 increased activated partial thromboplastin time dose-dependently and protected hF12\(^{KI}\) mice in an arterial thrombosis model without affecting bleeding times. Conclusion These data establish the newly generated hF12\(^{KI}\) mouse as a powerful and unique model system for in vivo studies on anti-FXII(a) biologics, supporting the development of efficient and safe human FXII(a) inhibitors.}, language = {en} } @article{BieberSchuhmannBellutetal.2022, author = {Bieber, Michael and Schuhmann, Michael K. and Bellut, Maximilian and Stegner, David and Heinze, Katrin G. and Pham, Mirko and Nieswandt, Bernhard and Stoll, Guido}, title = {Blockade of platelet glycoprotein Ibα augments neuroprotection in Orai2-deficient mice during middle cerebral artery occlusion}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286038}, year = {2022}, abstract = {During ischemic stroke, infarct growth before recanalization diminishes functional outcome. Hence, adjunct treatment options to protect the ischemic penumbra before recanalization are eagerly awaited. In experimental stroke targeting two different pathways conferred protection from penumbral tissue loss: (1) enhancement of hypoxic tolerance of neurons by deletion of the calcium channel subunit Orai2 and (2) blocking of detrimental lymphocyte-platelet responses. However, until now, no preclinical stroke study has assessed the potential of combining neuroprotective with anti-thrombo-inflammatory interventions to augment therapeutic effects. We induced focal cerebral ischemia in Orai2-deficient (Orai2\(^{-/-}\)) mice by middle cerebral artery occlusion (MCAO). Animals were treated with anti-glycoprotein Ib alpha (GPIbα) Fab fragments (p0p/B Fab) blocking GPIbα-von Willebrand factor (vWF) interactions. Rat immunoglobulin G (IgG) Fab was used as the control treatment. The extent of infarct growth before recanalization was assessed at 4 h after MCAO. Moreover, infarct volumes were determined 6 h after recanalization (occlusion time: 4 h). Orai2 deficiency significantly halted cerebral infarct progression under occlusion. Inhibition of platelet GPIbα further reduced primary infarct growth in Orai2\(^{-/-}\) mice. During ischemia-reperfusion, upon recanalization, mice were likewise protected. All in all, we show that neuroprotection in Orai2\(^{-/-}\) mice can be augmented by targeting thrombo-inflammation. This supports the clinical development of combined neuroprotective/anti-platelet strategies in hyper-acute stroke.}, language = {en} } @article{ChilloKleinertLautzetal.2016, author = {Chillo, Omary and Kleinert, Eike Christian and Lautz, Thomas and Lasch, Manuel and Pagel, Judith-Irina and Heun, Yvonn and Troidl, Kerstin and Fischer, Silvia and Caballero-Martinez, Amelia and Mauer, Annika and Kurz, Angela R. M. and Assmann, Gerald and Rehberg, Markus and Kanse, Sandip M. and Nieswandt, Bernhard and Walzog, Barbara and Reichel, Christoph A. and Mannell, Hanna and Preissner, Klaus T. and Deindl, Elisabeth}, title = {Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function}, series = {Cell Reports}, volume = {16}, journal = {Cell Reports}, number = {8}, doi = {10.1016/j.celrep.2016.07.040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164800}, pages = {2197-2207}, year = {2016}, abstract = {The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis) is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit+/CXCR-4+ cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases.}, language = {en} } @article{DrubeWeberLoschinskietal.2015, author = {Drube, Sebastian and Weber, Franziska and Loschinski, Romy and Beyer, Mandy and Rothe, Mandy and Rabenhorst, Anja and G{\"o}pfert, Christiane and Meininger, Isabel and Diamanti, Michaela A. and Stegner, David and H{\"a}fner, Norman and B{\"o}ttcher, Martin and Reinecke, Kirstin and Herdegen, Thomas and Greten, Florian R. and Nieswandt, Bernhard and Hartmann, Karin and Kr{\"a}mer, Oliver H. and Kamradt, Thomas}, title = {Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {7}, doi = {10.18632/oncotarget.3022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143681}, pages = {5354-5368}, year = {2015}, abstract = {Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca2\(^{+}\)-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term "subthreshold IKK activation". This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33. We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo. Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure.}, language = {en} } @article{DuettingGaitsIacovoniStegneretal.2017, author = {D{\"u}tting, Sebastian and Gaits-Iacovoni, Frederique and Stegner, David and Popp, Michael and Antkowiak, Adrien and van Eeuwijk, Judith M.M. and Nurden, Paquita and Stritt, Simon and Heib, Tobias and Aurbach, Katja and Angay, Oguzhan and Cherpokova, Deya and Heinz, Niels and Baig, Ayesha A. and Gorelashvili, Maximilian G. and Gerner, Frank and Heinze, Katrin G. and Ware, Jerry and Krohne, Georg and Ruggeri, Zaverio M. and Nurden, Alan T. and Schulze, Harald and Modlich, Ute and Pleines, Irina and Brakebusch, Cord and Nieswandt, Bernhard}, title = {A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15838}, doi = {10.1038/ncomms15838}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170797}, year = {2017}, abstract = {Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.}, language = {en} } @article{GoebVollZimmermannetal.2021, author = {G{\"o}b, Vanessa and Voll, Maximilian G. and Zimmermann, Lena and Hemmen, Katharina and Stoll, Guido and Nieswandt, Bernhard and Schuhmann, Michael K. and Heinze, Katrin G. and Stegner, David}, title = {Infarct growth precedes cerebral thrombosis following experimental stroke in mice}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-02360-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265791}, year = {2021}, abstract = {Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, successful recanalization of occluded vessels is the primary therapeutic aim, but even if it is achieved, not all patients benefit. Although blockade of platelet aggregation did not prevent infarct progression, cerebral thrombosis as cause of secondary infarct growth has remained a matter of debate. As cerebral thrombi are frequently observed after experimental stroke, a thrombus-induced impairment of the brain microcirculation is considered to contribute to tissue damage. Here, we combine the model of transient middle cerebral artery occlusion (tMCAO) with light sheet fluorescence microscopy and immunohistochemistry of brain slices to investigate the kinetics of thrombus formation and infarct progression. Our data reveal that tissue damage already peaks after 8 h of reperfusion following 60 min MCAO, while cerebral thrombi are only observed at later time points. Thus, cerebral thrombosis is not causative for secondary infarct growth during ischemic stroke.}, language = {en} } @article{GoebelPankratzAsaridouetal.2016, author = {G{\"o}bel, Kerstin and Pankratz, Susann and Asaridou, Chloi-Magdalini and Herrmann, Alexander M. and Bittner, Stefan and Merker, Monika and Ruck, Tobias and Glumm, Sarah and Langhauser, Friederike and Kraft, Peter and Krug, Thorsten F. and Breuer, Johanna and Herold, Martin and Gross, Catharina C. and Beckmann, Denise and Korb-Pap, Adelheid and Schuhmann, Michael K. and Kuerten, Stefanie and Mitroulis, Ioannis and Ruppert, Clemens and Nolte, Marc W. and Panousis, Con and Klotz, Luisa and Kehrel, Beate and Korn, Thomas and Langer, Harald F. and Pap, Thomas and Nieswandt, Bernhard and Wiendl, Heinz and Chavakis, Triantafyllos and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {11626}, doi = {10.1038/ncomms11626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165503}, year = {2016}, abstract = {Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.}, language = {en} } @article{HofmannBraunPozgajetal.2014, author = {Hofmann, Sebastian and Braun, Attila and Pozgaj, Rastislav and Morowski, Martina and V{\"o}gtle, Timo and Nieswandt, Bernhard}, title = {Mice lacking the SLAM family member CD84 display unaltered platelet function in hemostasis and thrombosis}, series = {PLoS One}, volume = {9}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0115306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126477}, pages = {e115306}, year = {2014}, abstract = {Background Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity by forming thrombi at sites of vascular injury. Although the early events of thrombus formation—platelet adhesion and aggregation—have been intensively studied, less is known about the mechanisms and receptors that stabilize platelet-platelet interactions once a thrombus has formed. One receptor that has been implicated in this process is the signaling lymphocyte activation molecule (SLAM) family member CD84, which can undergo homophilic interactions and becomes phosphorylated upon platelet aggregation. Objective The role of CD84 in platelet physiology and thrombus formation was investigated in CD84-deficient mice. Methods and Results We generated CD84-deficient mice and analyzed their platelets in vitro and in vivo. \(Cd84^{-/-}\) platelets exhibited normal activation and aggregation responses to classical platelet agonists. Furthermore, CD84 deficiency did not affect integrin-mediated clot retraction and spreading of activated platelets on fibrinogen. Notably, also the formation of stable three-dimensional thrombi on collagen-coated surfaces under flow ex vivo was unaltered in the blood of \(Cd84^{-/-}\) mice. In vivo, \(Cd84^{-/-}\) mice exhibited unaltered hemostatic function and arterial thrombus formation. Conclusion These results show that CD84 is dispensable for thrombus formation and stabilization, indicating that its deficiency may be functionally compensated by other receptors or that it may be important for platelet functions different from platelet-platelet interactions.}, language = {en} }